Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
6bb83ad3
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6bb83ad3
编写于
7月 11, 2020
作者:
Z
ZPaC
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add ps optimizer kernels.
上级
da9452ee
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
465 addition
and
3 deletion
+465
-3
mindspore/ccsrc/kernel/CMakeLists.txt
mindspore/ccsrc/kernel/CMakeLists.txt
+4
-1
mindspore/ccsrc/kernel/cpu/ps/apply_momentum_ps_kernel.cc
mindspore/ccsrc/kernel/cpu/ps/apply_momentum_ps_kernel.cc
+33
-0
mindspore/ccsrc/kernel/cpu/ps/apply_momentum_ps_kernel.h
mindspore/ccsrc/kernel/cpu/ps/apply_momentum_ps_kernel.h
+43
-0
mindspore/ccsrc/kernel/cpu/ps/pserver_kernel.cc
mindspore/ccsrc/kernel/cpu/ps/pserver_kernel.cc
+24
-0
mindspore/ccsrc/kernel/cpu/ps/pserver_kernel.h
mindspore/ccsrc/kernel/cpu/ps/pserver_kernel.h
+57
-0
mindspore/ccsrc/kernel/cpu/ps/sparse_apply_adam_ps_kernel.cc
mindspore/ccsrc/kernel/cpu/ps/sparse_apply_adam_ps_kernel.cc
+100
-0
mindspore/ccsrc/kernel/cpu/ps/sparse_apply_adam_ps_kernel.h
mindspore/ccsrc/kernel/cpu/ps/sparse_apply_adam_ps_kernel.h
+49
-0
mindspore/ccsrc/kernel/cpu/ps/sparse_apply_ftrl_ps_kernel.cc
mindspore/ccsrc/kernel/cpu/ps/sparse_apply_ftrl_ps_kernel.cc
+103
-0
mindspore/ccsrc/kernel/cpu/ps/sparse_apply_ftrl_ps_kernel.h
mindspore/ccsrc/kernel/cpu/ps/sparse_apply_ftrl_ps_kernel.h
+50
-0
mindspore/ccsrc/kernel/cpu/sparse_apply_adam_cpu_kernel.h
mindspore/ccsrc/kernel/cpu/sparse_apply_adam_cpu_kernel.h
+1
-1
mindspore/ccsrc/kernel/cpu/sparse_apply_ftrl_cpu_kernel.h
mindspore/ccsrc/kernel/cpu/sparse_apply_ftrl_cpu_kernel.h
+1
-1
未找到文件。
mindspore/ccsrc/kernel/CMakeLists.txt
浏览文件 @
6bb83ad3
...
...
@@ -29,7 +29,10 @@ if (ENABLE_CPU)
list
(
REMOVE_ITEM CPU_SRC_LIST
"cpu/ps/push_kernel.cc"
"cpu/ps/pull_kernel.cc"
"cpu/ps/embedding_look_up_ps_kernel.cc"
"cpu/ps/embedding_look_up_proxy_kernel.cc"
)
"cpu/ps/embedding_look_up_proxy_kernel.cc"
"cpu/ps/apply_momentum_ps_kernel.cc"
"cpu/ps/sparse_apply_adam_ps_kernel.cc"
"cpu/ps/sparse_apply_ftrl_ps_kernel.cc"
)
if
(
NOT ENABLE_MPI
)
list
(
REMOVE_ITEM CPU_SRC_LIST
"cpu/allgather_cpu_kernel.cc"
)
...
...
mindspore/ccsrc/kernel/cpu/ps/apply_momentum_ps_kernel.cc
0 → 100644
浏览文件 @
6bb83ad3
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/cpu/ps/apply_momentum_ps_kernel.h"
namespace
mindspore
{
namespace
kernel
{
namespace
ps
{
bool
ApplyMomentumPSKernel
::
Execute
(
const
std
::
vector
<
AddressPtr
>
&
inputs
,
const
std
::
vector
<
AddressPtr
>
&
workspace
,
const
std
::
vector
<
AddressPtr
>
&
outputs
)
{
return
Launch
(
inputs
,
workspace
,
outputs
);
}
const
std
::
vector
<
size_t
>
&
ApplyMomentumPSKernel
::
input_sizes
()
const
{
return
GetInputSizeList
();
}
const
std
::
vector
<
size_t
>
&
ApplyMomentumPSKernel
::
output_sizes
()
const
{
return
GetOutputSizeList
();
}
const
std
::
vector
<
size_t
>
&
ApplyMomentumPSKernel
::
workspace_sizes
()
const
{
return
GetWorkspaceSizeList
();
}
}
// namespace ps
}
// namespace kernel
}
// namespace mindspore
mindspore/ccsrc/kernel/cpu/ps/apply_momentum_ps_kernel.h
0 → 100644
浏览文件 @
6bb83ad3
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_CPU_APPLY_MOMENTUM_PS_KERNEL_H_
#define MINDSPORE_CCSRC_KERNEL_CPU_APPLY_MOMENTUM_PS_KERNEL_H_
#include <vector>
#include <memory>
#include "kernel/cpu/ps/pserver_kernel.h"
#include "kernel/cpu/apply_momentum_cpu_kernel.h"
namespace
mindspore
{
namespace
kernel
{
namespace
ps
{
class
ApplyMomentumPSKernel
:
public
ApplyMomentumCPUKernel
,
public
PServerKernel
{
public:
ApplyMomentumPSKernel
(
size_t
rank_id
,
size_t
pserver_num
)
:
PServerKernel
(
rank_id
,
pserver_num
)
{}
~
ApplyMomentumPSKernel
()
override
=
default
;
bool
Execute
(
const
std
::
vector
<
AddressPtr
>
&
inputs
,
const
std
::
vector
<
AddressPtr
>
&
workspace
,
const
std
::
vector
<
AddressPtr
>
&
outputs
)
override
;
const
std
::
vector
<
size_t
>
&
input_sizes
()
const
override
;
const
std
::
vector
<
size_t
>
&
output_sizes
()
const
override
;
const
std
::
vector
<
size_t
>
&
workspace_sizes
()
const
override
;
};
}
// namespace ps
}
// namespace kernel
}
// namespace mindspore
#endif // MINDSPORE_CCSRC_KERNEL_CPU_APPLY_MOMENTUM_PS_KERNEL_H_
mindspore/ccsrc/kernel/cpu/ps/pserver_kernel.cc
0 → 100644
浏览文件 @
6bb83ad3
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/cpu/ps/pserver_kernel.h"
#include "parallel/ps/util.h"
namespace
mindspore
{
namespace
kernel
{
namespace
ps
{}
// namespace ps
}
// namespace kernel
}
// namespace mindspore
mindspore/ccsrc/kernel/cpu/ps/pserver_kernel.h
0 → 100644
浏览文件 @
6bb83ad3
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_PS_PSERVER_KERNEL_H_
#define MINDSPORE_CCSRC_KERNEL_PS_PSERVER_KERNEL_H_
#include <vector>
#include <memory>
#include "kernel/kernel.h"
#include "parallel/ps/util.h"
namespace
mindspore
{
namespace
kernel
{
namespace
ps
{
using
mindspore
::
parallel
::
ps
::
Util
;
class
PServerKernel
{
public:
PServerKernel
(
size_t
rank_id
,
size_t
pserver_num
)
:
rank_id_
(
rank_id
),
pserver_num_
(
pserver_num
)
{}
~
PServerKernel
()
=
default
;
PServerKernel
(
const
PServerKernel
&
)
=
delete
;
PServerKernel
&
operator
=
(
const
PServerKernel
&
)
=
delete
;
virtual
void
InitKernel
(
const
std
::
shared_ptr
<
std
::
vector
<
std
::
shared_ptr
<
std
::
vector
<
size_t
>>>>
&
)
{}
virtual
void
ReInit
(
const
std
::
shared_ptr
<
std
::
vector
<
std
::
shared_ptr
<
std
::
vector
<
size_t
>>>>
&
)
{}
virtual
bool
Execute
(
const
std
::
vector
<
AddressPtr
>
&
inputs
,
const
std
::
vector
<
AddressPtr
>
&
workspace
,
const
std
::
vector
<
AddressPtr
>
&
outputs
)
=
0
;
virtual
const
std
::
vector
<
size_t
>
&
input_sizes
()
const
=
0
;
virtual
const
std
::
vector
<
size_t
>
&
output_sizes
()
const
=
0
;
virtual
const
std
::
vector
<
size_t
>
&
workspace_sizes
()
const
=
0
;
protected:
virtual
void
ReInit
(
const
std
::
vector
<
AddressPtr
>
&
)
{}
void
Shard
(
std
::
vector
<
size_t
>
*
shape
,
int
axis
)
{
(
*
shape
)[
axis
]
=
Util
::
LocalShard
((
*
shape
)[
axis
],
rank_id_
,
pserver_num_
);
}
size_t
rank_id_
;
size_t
pserver_num_
;
};
}
// namespace ps
}
// namespace kernel
}
// namespace mindspore
#endif // MINDSPORE_CCSRC_KERNEL_PS_PSERVER_KERNEL_H_
mindspore/ccsrc/kernel/cpu/ps/sparse_apply_adam_ps_kernel.cc
0 → 100644
浏览文件 @
6bb83ad3
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/cpu/ps/sparse_apply_adam_ps_kernel.h"
#include <memory>
#include "kernel/common_utils.h"
#include "device/cpu/cpu_device_address.h"
#include "parallel/ps/util.h"
namespace
mindspore
{
namespace
kernel
{
namespace
ps
{
void
SparseApplyAdamPSKernel
::
InitKernel
(
const
std
::
shared_ptr
<
std
::
vector
<
std
::
shared_ptr
<
std
::
vector
<
size_t
>>>>
&
shapes
)
{
const
std
::
vector
<
std
::
shared_ptr
<
std
::
vector
<
size_t
>>>
&
shape_vec
=
*
shapes
;
std
::
vector
<
size_t
>
&
var_shape
=
*
(
shape_vec
[
0
]);
std
::
vector
<
size_t
>
&
m_shape
=
*
(
shape_vec
[
1
]);
std
::
vector
<
size_t
>
&
v_shape
=
*
(
shape_vec
[
2
]);
const
std
::
vector
<
size_t
>
&
grad_shape
=
*
(
shape_vec
[
9
]);
const
std
::
vector
<
size_t
>
&
indices_shape
=
*
(
shape_vec
[
10
]);
Shard
(
&
var_shape
,
0
);
Shard
(
&
m_shape
,
0
);
Shard
(
&
v_shape
,
0
);
if
(
!
IsSameShape
(
var_shape
,
m_shape
))
{
MS_LOG
(
EXCEPTION
)
<<
"var and m should have the same shape"
;
}
if
(
!
IsSameShape
(
var_shape
,
v_shape
))
{
MS_LOG
(
EXCEPTION
)
<<
"var and v should have the same shape"
;
}
var_first_dim_size_
=
var_shape
[
0
];
for
(
size_t
i
=
1
;
i
<
var_shape
.
size
();
++
i
)
{
if
(
var_shape
[
i
]
!=
grad_shape
[
i
])
{
MS_LOG
(
EXCEPTION
)
<<
"The shape of var and grad must equal in dimension "
<<
i
;
}
var_outer_dim_size_
*=
var_shape
[
i
];
}
if
(
indices_shape
.
size
()
!=
1
)
{
MS_LOG
(
EXCEPTION
)
<<
"indices must be 1D"
;
}
indices_size_
=
indices_shape
[
0
];
if
(
grad_shape
[
0
]
!=
indices_size_
)
{
MS_LOG
(
ERROR
)
<<
"The first dimension of grad shape must be equal to indices"
;
}
/*
if (AnfAlgo::HasNodeAttr(USE_NESTEROV, kernel_node)) {
use_nesterov_ = AnfAlgo::GetNodeAttr<bool>(kernel_node, "use_nesterov");
}
*/
workspace_size_list_
.
emplace_back
(
indices_size_
*
var_outer_dim_size_
*
sizeof
(
float
));
workspace_size_list_
.
emplace_back
(
indices_size_
*
sizeof
(
int
));
workspace_size_list_
.
emplace_back
(
var_first_dim_size_
*
var_outer_dim_size_
*
sizeof
(
float
));
}
void
SparseApplyAdamPSKernel
::
ReInit
(
const
std
::
shared_ptr
<
std
::
vector
<
std
::
shared_ptr
<
std
::
vector
<
size_t
>>>>
&
shapes
)
{
const
std
::
vector
<
std
::
shared_ptr
<
std
::
vector
<
size_t
>>>
&
shape_vec
=
*
shapes
;
const
std
::
vector
<
size_t
>
&
indices_shape
=
*
(
shape_vec
[
0
]);
indices_size_
=
indices_shape
[
0
];
workspace_size_list_
[
0
]
=
indices_size_
*
var_outer_dim_size_
*
sizeof
(
float
);
workspace_size_list_
[
1
]
=
indices_size_
*
sizeof
(
int
);
}
void
SparseApplyAdamPSKernel
::
ReInit
(
const
std
::
vector
<
AddressPtr
>
&
inputs
)
{
const
auto
&
indices_addr
=
inputs
[
10
];
indices_size_
=
indices_addr
->
size
;
workspace_size_list_
[
0
]
=
indices_size_
*
var_outer_dim_size_
*
sizeof
(
float
);
workspace_size_list_
[
1
]
=
indices_size_
*
sizeof
(
int
);
}
bool
SparseApplyAdamPSKernel
::
Execute
(
const
std
::
vector
<
AddressPtr
>
&
inputs
,
const
std
::
vector
<
AddressPtr
>
&
workspace
,
const
std
::
vector
<
AddressPtr
>
&
outputs
)
{
ReInit
(
inputs
);
int
*
indices
=
reinterpret_cast
<
int
*>
(
inputs
[
10
]
->
addr
);
for
(
size_t
i
=
0
;
i
<
inputs
[
10
]
->
size
/
sizeof
(
int
);
i
++
)
{
indices
[
i
]
-=
rank_id_
*
var_first_dim_size_
;
}
return
Launch
(
inputs
,
workspace
,
outputs
);
}
const
std
::
vector
<
size_t
>
&
SparseApplyAdamPSKernel
::
input_sizes
()
const
{
return
GetInputSizeList
();
}
const
std
::
vector
<
size_t
>
&
SparseApplyAdamPSKernel
::
output_sizes
()
const
{
return
GetOutputSizeList
();
}
const
std
::
vector
<
size_t
>
&
SparseApplyAdamPSKernel
::
workspace_sizes
()
const
{
return
GetWorkspaceSizeList
();
}
}
// namespace ps
}
// namespace kernel
}
// namespace mindspore
mindspore/ccsrc/kernel/cpu/ps/sparse_apply_adam_ps_kernel.h
0 → 100644
浏览文件 @
6bb83ad3
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_ADAM_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_ADAM_PS_KERNEL_H_
#include <vector>
#include <memory>
#include "kernel/cpu/ps/pserver_kernel.h"
#include "kernel/cpu/sparse_apply_adam_cpu_kernel.h"
namespace
mindspore
{
namespace
kernel
{
namespace
ps
{
using
mindspore
::
kernel
::
SparseApplyAdamCPUKernel
;
class
SparseApplyAdamPSKernel
:
public
SparseApplyAdamCPUKernel
,
public
PServerKernel
{
public:
SparseApplyAdamPSKernel
(
size_t
rank_id
,
size_t
pserver_num
)
:
PServerKernel
(
rank_id
,
pserver_num
)
{}
~
SparseApplyAdamPSKernel
()
override
=
default
;
void
InitKernel
(
const
std
::
shared_ptr
<
std
::
vector
<
std
::
shared_ptr
<
std
::
vector
<
size_t
>>>>
&
)
override
;
void
ReInit
(
const
std
::
shared_ptr
<
std
::
vector
<
std
::
shared_ptr
<
std
::
vector
<
size_t
>>>>
&
)
override
;
bool
Execute
(
const
std
::
vector
<
AddressPtr
>
&
inputs
,
const
std
::
vector
<
AddressPtr
>
&
workspace
,
const
std
::
vector
<
AddressPtr
>
&
outputs
)
override
;
const
std
::
vector
<
size_t
>
&
input_sizes
()
const
override
;
const
std
::
vector
<
size_t
>
&
output_sizes
()
const
override
;
const
std
::
vector
<
size_t
>
&
workspace_sizes
()
const
override
;
protected:
void
ReInit
(
const
std
::
vector
<
AddressPtr
>
&
)
override
;
};
}
// namespace ps
}
// namespace kernel
}
// namespace mindspore
#endif // MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_ADAM_PS_KERNEL_H_
mindspore/ccsrc/kernel/cpu/ps/sparse_apply_ftrl_ps_kernel.cc
0 → 100644
浏览文件 @
6bb83ad3
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/cpu/ps/sparse_apply_ftrl_ps_kernel.h"
#include "device/cpu/cpu_device_address.h"
namespace
mindspore
{
namespace
kernel
{
namespace
ps
{
void
SparseApplyFtrlPSKernel
::
InitKernel
(
const
std
::
shared_ptr
<
std
::
vector
<
std
::
shared_ptr
<
std
::
vector
<
size_t
>>>>
&
shapes
)
{
const
std
::
vector
<
std
::
shared_ptr
<
std
::
vector
<
size_t
>>>
&
shape_vec
=
*
shapes
;
std
::
vector
<
size_t
>
var_shape
=
*
(
shape_vec
[
0
]);
std
::
vector
<
size_t
>
accum_shape
=
*
(
shape_vec
[
1
]);
std
::
vector
<
size_t
>
linear_shape
=
*
(
shape_vec
[
2
]);
std
::
vector
<
size_t
>
grad_shape
=
*
(
shape_vec
[
3
]);
std
::
vector
<
size_t
>
indices_shape
=
*
(
shape_vec
[
4
]);
Shard
(
&
var_shape
,
0
);
Shard
(
&
accum_shape
,
0
);
Shard
(
&
linear_shape
,
0
);
var_first_dim_size_
=
var_shape
[
0
];
for
(
size_t
i
=
1
;
i
<
var_shape
.
size
();
++
i
)
{
if
(
var_shape
[
i
]
!=
grad_shape
[
i
])
{
MS_LOG
(
EXCEPTION
)
<<
"The shape of var and grad must equal in dimension "
<<
i
;
}
var_outer_dim_size_
*=
var_shape
[
i
];
}
if
(
indices_shape
.
size
()
!=
1
)
{
MS_LOG
(
EXCEPTION
)
<<
"indices must be a 1D vector"
;
}
indices_size_
=
indices_shape
[
0
];
if
(
grad_shape
[
0
]
!=
indices_size_
)
{
MS_LOG
(
EXCEPTION
)
<<
"The first dimension of grad shape must be equal to indices"
;
}
/*
lr_ = AnfAlgo::GetNodeAttr<float>(kernel_node, "lr");
if (lr_ <= 0) {
MS_LOG(EXCEPTION) << "lr should be a positive scalar";
}
l1_ = AnfAlgo::GetNodeAttr<float>(kernel_node, "l1");
if (l1_ < 0) {
MS_LOG(EXCEPTION) << "l1 should be a non-negative scalar";
}
l2_ = AnfAlgo::GetNodeAttr<float>(kernel_node, "l2");
if (l2_ < 0) {
MS_LOG(EXCEPTION) << "l2 should be a non-negative scalar";
}
lr_power_ = AnfAlgo::GetNodeAttr<float>(kernel_node, "lr_power");
if (lr_power_ > 0) {
MS_LOG(EXCEPTION) << "lr_power should be a non-positive scalar";
}
*/
workspace_size_list_
.
emplace_back
(
indices_size_
*
var_outer_dim_size_
*
sizeof
(
float
));
workspace_size_list_
.
emplace_back
(
indices_size_
*
sizeof
(
int
));
}
void
SparseApplyFtrlPSKernel
::
ReInit
(
const
std
::
shared_ptr
<
std
::
vector
<
std
::
shared_ptr
<
std
::
vector
<
size_t
>>>>
&
shapes
)
{
const
std
::
vector
<
std
::
shared_ptr
<
std
::
vector
<
size_t
>>>
&
shape_vec
=
*
shapes
;
std
::
vector
<
size_t
>
indices_shape
=
*
(
shape_vec
[
0
]);
indices_size_
=
indices_shape
[
0
];
workspace_size_list_
[
0
]
=
indices_size_
*
var_outer_dim_size_
*
sizeof
(
float
);
workspace_size_list_
[
1
]
=
indices_size_
*
sizeof
(
int
);
}
void
SparseApplyFtrlPSKernel
::
ReInit
(
const
std
::
vector
<
AddressPtr
>
&
inputs
)
{
const
auto
&
indices_addr
=
inputs
[
4
];
indices_size_
=
indices_addr
->
size
;
workspace_size_list_
[
0
]
=
indices_size_
*
var_outer_dim_size_
*
sizeof
(
float
);
workspace_size_list_
[
1
]
=
indices_size_
*
sizeof
(
int
);
}
bool
SparseApplyFtrlPSKernel
::
Execute
(
const
std
::
vector
<
AddressPtr
>
&
inputs
,
const
std
::
vector
<
AddressPtr
>
&
workspace
,
const
std
::
vector
<
AddressPtr
>
&
outputs
)
{
ReInit
(
inputs
);
int
*
indices
=
reinterpret_cast
<
int
*>
(
inputs
[
4
]
->
addr
);
for
(
size_t
i
=
0
;
i
<
inputs
[
4
]
->
size
/
sizeof
(
int
);
i
++
)
{
indices
[
i
]
-=
rank_id_
*
var_first_dim_size_
;
}
return
Launch
(
inputs
,
workspace
,
outputs
);
}
const
std
::
vector
<
size_t
>
&
SparseApplyFtrlPSKernel
::
input_sizes
()
const
{
return
GetInputSizeList
();
}
const
std
::
vector
<
size_t
>
&
SparseApplyFtrlPSKernel
::
output_sizes
()
const
{
return
GetOutputSizeList
();
}
const
std
::
vector
<
size_t
>
&
SparseApplyFtrlPSKernel
::
workspace_sizes
()
const
{
return
GetWorkspaceSizeList
();
}
}
// namespace ps
}
// namespace kernel
}
// namespace mindspore
mindspore/ccsrc/kernel/cpu/ps/sparse_apply_ftrl_ps_kernel.h
0 → 100644
浏览文件 @
6bb83ad3
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_FTRL_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_FTRL_PS_KERNEL_H_
#include <vector>
#include <memory>
#include "kernel/cpu/ps/pserver_kernel.h"
#include "kernel/cpu/sparse_apply_ftrl_cpu_kernel.h"
namespace
mindspore
{
namespace
kernel
{
namespace
ps
{
using
mindspore
::
kernel
::
SparseApplyFtrlCPUKernel
;
class
SparseApplyFtrlPSKernel
:
public
SparseApplyFtrlCPUKernel
,
public
PServerKernel
{
public:
SparseApplyFtrlPSKernel
(
size_t
rank_id
,
size_t
pserver_num
)
:
PServerKernel
(
rank_id
,
pserver_num
)
{}
~
SparseApplyFtrlPSKernel
()
override
=
default
;
void
InitKernel
(
const
std
::
shared_ptr
<
std
::
vector
<
std
::
shared_ptr
<
std
::
vector
<
size_t
>>>>
&
)
override
;
void
ReInit
(
const
std
::
shared_ptr
<
std
::
vector
<
std
::
shared_ptr
<
std
::
vector
<
size_t
>>>>
&
)
override
;
bool
Execute
(
const
std
::
vector
<
AddressPtr
>
&
inputs
,
const
std
::
vector
<
AddressPtr
>
&
workspace
,
const
std
::
vector
<
AddressPtr
>
&
outputs
)
override
;
const
std
::
vector
<
size_t
>
&
input_sizes
()
const
override
;
const
std
::
vector
<
size_t
>
&
output_sizes
()
const
override
;
const
std
::
vector
<
size_t
>
&
workspace_sizes
()
const
override
;
protected:
void
ReInit
(
const
std
::
vector
<
AddressPtr
>
&
)
override
;
};
}
// namespace ps
}
// namespace kernel
}
// namespace mindspore
#endif // MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_FTRL_PS_KERNEL_H_
mindspore/ccsrc/kernel/cpu/sparse_apply_adam_cpu_kernel.h
浏览文件 @
6bb83ad3
...
...
@@ -33,7 +33,7 @@ class SparseApplyAdamCPUKernel : public CPUKernel {
bool
Launch
(
const
std
::
vector
<
AddressPtr
>
&
inputs
,
const
std
::
vector
<
AddressPtr
>
&
workspace
,
const
std
::
vector
<
AddressPtr
>
&
outputs
)
override
;
pr
ivate
:
pr
otected
:
size_t
indices_size_
{
0
};
size_t
var_first_dim_size_
{
0
};
size_t
var_outer_dim_size_
{
1
};
...
...
mindspore/ccsrc/kernel/cpu/sparse_apply_ftrl_cpu_kernel.h
浏览文件 @
6bb83ad3
...
...
@@ -32,7 +32,7 @@ class SparseApplyFtrlCPUKernel : public CPUKernel {
bool
Launch
(
const
std
::
vector
<
AddressPtr
>
&
inputs
,
const
std
::
vector
<
AddressPtr
>
&
workspace
,
const
std
::
vector
<
AddressPtr
>
&
outputs
)
override
;
pr
ivate
:
pr
otected
:
size_t
indices_size_
{
0
};
size_t
var_first_dim_size_
{
0
};
size_t
var_outer_dim_size_
{
1
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录