test_tensor_slice.py 11.1 KB
Newer Older
Z
zhunaipan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test_tensor_slice """
import numpy as np
import pytest

from mindspore import Tensor
from mindspore import context
C
candanzg 已提交
21
from mindspore import dtype as mstype
Z
zhunaipan 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
from mindspore.nn import Cell

from ....mindspore_test_framework.mindspore_test import mindspore_test
from ....mindspore_test_framework.pipeline.forward.compile_forward \
    import pipeline_for_compile_forward_ge_graph_for_case_by_case_config


class NetWorkSlicePositive(Cell):
    def __init__(self):
        super(NetWorkSlicePositive, self).__init__()
        self.tensor_ret0 = Tensor(np.ones([1, 2, 2], np.int32))
        self.tensor_ret1 = Tensor(np.ones([4, 7, 4], np.int32))
        self.tensor_ret2 = Tensor(np.ones([6, 8, 10], np.int32))
        self.tensor_ret3 = Tensor(np.ones([3, 8, 10], np.int32))

    def construct(self, tensor):
        ret0 = tensor[3:4:3, 1:5:2, 3:6:2] + self.tensor_ret0
        ret1 = tensor[-6:4:1, 7:-8:-1, ::3] + self.tensor_ret1
        ret2 = tensor[::, ::, ::] + self.tensor_ret2
        ret3 = tensor[::2] + self.tensor_ret3
        return ret0, ret1, ret2, ret3


45 46 47 48 49 50 51 52 53 54 55 56 57 58
class NetWorkSliceEllipsis(Cell):
    def __init__(self):
        super(NetWorkSliceEllipsis, self).__init__()
        self.tensor_ret0 = Tensor(np.ones([2, 7, 8], np.int32))
        self.tensor_ret1 = Tensor(np.ones([6, 7, 8, 9], np.int32))
        self.tensor_ret2 = Tensor(np.ones([1, 6, 7, 8, 9], np.int32))

    def construct(self, tensor):
        ret0 = tensor[0:4:2, ..., 1] + self.tensor_ret0
        ret1 = tensor[...] + self.tensor_ret1
        ret2 = tensor[True] + self.tensor_ret2
        return ret0, ret1, ret2


Z
zhunaipan 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
class NetWorkReduceDimension(Cell):
    def __init__(self):
        super(NetWorkReduceDimension, self).__init__()
        self.tensor_ret0 = Tensor(np.ones([2, 4, 1], np.int32))
        self.tensor_ret1 = Tensor(np.ones([3, 4], np.int32))
        self.tensor_ret2 = Tensor(np.ones([6, 8], np.int32))
        self.tensor_ret3 = Tensor(np.array(8, np.int32))
        self.tensor_ret4 = Tensor(np.ones([8, 10], np.int32))

    def construct(self, tensor):
        ret0 = tensor[0:6:3, 1:5:1, 3:5:2] + self.tensor_ret0
        ret1 = tensor[::2, 1, ::3] + self.tensor_ret1
        ret2 = tensor[::, ::, 0] + self.tensor_ret2
        ret3 = tensor[3, 2, 5] + self.tensor_ret3
        ret4 = tensor[1] + self.tensor_ret4
        return ret0, ret1, ret2, ret3, ret4


class NetWorkStepNegative(Cell):
    def __init__(self):
        super(NetWorkStepNegative, self).__init__()
        self.tensor_ret = Tensor(np.ones([6, 5, 10], np.int32))

    def construct(self, tensor):
        ret = tensor[::1, -5::, ::-1] + self.tensor_ret
        return ret


class NetWorkReduceToScalar(Cell):
    def __init__(self):
        super(NetWorkReduceToScalar, self).__init__()
        self.tensor_ret = Tensor(np.array(9, np.int32))

    def construct(self, tensor):
        ret = tensor[2, 3, 4] + self.tensor_ret
        return ret


C
candanzg 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
class TensorAssignWithSliceError1(Cell):
    def __init__(self):
        super(TensorAssignWithSliceError1, self).__init__()

    def construct(self, a, b):
        a[1:3:-1,::] = b
        return a

class TensorAssignWithSliceError2(Cell):
    def __init__(self):
        super(TensorAssignWithSliceError2, self).__init__()

    def construct(self, a, b):
        a[1:3:-1] = b
        return a
class TensorAssignWithSlice2(Cell):
    def __init__(self):
        super(TensorAssignWithSlice2, self).__init__()

    def construct(self, a, b):
        a[1:5] = b
        a[3:4] = 5
        a[-1:1:-1] = b
        a[-1:3:-1] = 5
        a[::] = b
        a[::] = 9
        return a
class TensorAssignWithSlice(Cell):
    def __init__(self):
        super(TensorAssignWithSlice, self).__init__()
        self.c = 2

    def construct(self, a, b):
        a[1:3,::] = b
        a[2:3:,3:] = b
        a[::] = b
        a[::] = self.c
        a[::,::] = b
        a[::,::] = self.c
        a[2:3:,0:, 4:1:-1] = b
        a[2:3:,0:, 4:1:-1] = self.c
        z = a
        return z

def test_tensor_assign_with_slice():
    context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
    net = TensorAssignWithSlice()
    net2= TensorAssignWithSlice2()
    net_e1 = TensorAssignWithSliceError1()
    net_e2 = TensorAssignWithSliceError2()
    a = np.arange(60).reshape(3,4,5)
    b = Tensor([1])
    Ta = Tensor(a)
    Tb= Tensor([1,3])
    Tc= Tensor([])
    t = Tensor([1, 2, 3, 4, 5, 6, 7, 8])
    net(Ta, b)
    net2(t, b)
    # Error for A[Slice] = Number
    # 1. A[Slice] = Number,  Slice error
    with pytest.raises(ValueError):
        net_e2(t, 2)

    # Error for A[Slice] = U, U is a Tensor
    # 1. A[Slice] = U,  u.size is error
    with pytest.raises(ValueError):
        net2(t, Tb)
    # 2. A[Slice] = U, U is empty
    with pytest.raises(ValueError):
        net2(t, Tc)
    # 3. A[Slice] = U, U.size error
    with pytest.raises(ValueError):
        net2(t, Tb)

    # Error for A[Tuple(Slice...)] = Tensor
    # 1. A[Tuple(Slice...)] = U, U is empty
    with pytest.raises(ValueError):
        net(Ta, Tc)
    # 2. A[Tuple(Slice...)] = U, U.size error
    with pytest.raises(ValueError):
        net(Ta, Tb)
    # 3. A[Tuple(Slice...)] = U,  Slice error
    with pytest.raises(ValueError):
        net_e1(Ta, b)

    # Error for A[Tuple(Slice...)] = Number
    # 1. A[Tuple(Slice...)] = Number,  Slice error
    with pytest.raises(ValueError):
        net_e1(Ta, 2)


C
candanzg 已提交
188 189 190
class TensorAssignWithBoolTensorIndex(Cell):
    def __init__(self):
        super(TensorAssignWithBoolTensorIndex, self).__init__()
C
candanzg 已提交
191
        self.t = Tensor(np.arange(60).reshape([3,4,5]), dtype = mstype.float64)
C
candanzg 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

    def construct(self, a, b, c, u_tensor, _scalar):
        a[c] = u_scalar
        a[b] = u_tensor
        z = a + self.t
        return z


class TensorAssignWithBoolTensorIndexError(Cell):
    def __init__(self):
        super(TensorAssignWithBoolTensorIndexError, self).__init__()

    def construct(self, a, b, c, u_tensor):
        a[b][c] = u_tensor
        return a


class TensorAssignWithBoolTensorIndex2(Cell):
    def __init__(self):
        super(TensorAssignWithBoolTensorIndex2, self).__init__()
212
        self.t = Tensor(np.arange(6).reshape([2, 3]), dtype=mstype.float64)
C
candanzg 已提交
213
        self.t = Tensor(np.arange(60).reshape([3,4,5]), dtype = mstype.float64)
C
candanzg 已提交
214 215

    def construct(self, a, u_tensor, _scalar):
216 217 218 219 220
        a[a > 8] = u_tensor
        a[a >= 6] = u_scalar
        a[a < 3] = u_scalar
        a[a <= 5] = u_tensor
        a[a == 5] = u_scalar
C
candanzg 已提交
221 222 223 224 225 226 227 228 229
        z = a + self.t
        return z


class TensorAssignWithBoolTensorIndex2Error(Cell):
    def __init__(self):
        super(TensorAssignWithBoolTensorIndex2Error, self).__init__()

    def construct(self, a, u_tensor):
230
        a[a > 8][a > 5] = u_tensor
C
candanzg 已提交
231 232 233
        return a


C
candanzg 已提交
234
a = np.random.uniform(1,10,[3,4,5])
C
candanzg 已提交
235 236 237 238 239 240 241 242
b = a > 5
c = a < 3
Ta = Tensor(a)
Tb = Tensor(b)
Tc = Tensor(c)
Td = Tensor([True, True])
u_tensor = Tensor([1])
u_tensor_error = Tensor([1, 2])
C
candanzg 已提交
243
t_1d = Tensor([1, 2, 3, 4, 5, 6, 7, 8])
C
candanzg 已提交
244 245 246 247 248
u_scalar = 5

def test_tensor_assign_bool_index():
    net1 = TensorAssignWithBoolTensorIndex()
    net2 = TensorAssignWithBoolTensorIndex2()
C
candanzg 已提交
249
    net1(Ta, Tb, Tc, u_tensor, u_scalar)
C
candanzg 已提交
250 251 252 253 254 255 256 257 258 259 260
    net1(Ta, Tb, Tc, u_tensor, u_scalar)
    with pytest.raises(ValueError):
        net1(Ta, Td, Tc, u_tensor, u_scalar)
    with pytest.raises(ValueError):
        net1(Ta, u_tensor, Tc, u_tensor, u_scalar)
    with pytest.raises(ValueError):
        net1(Ta, Tb, Td, u_tensor, u_scalar)
    with pytest.raises(ValueError):
        net1(Ta, Tb, Ta, u_tensor, u_scalar)
    with pytest.raises(ValueError):
        net1(Ta, Tb, Tc, u_tensor_error, u_scalar)
261
    # net1(Ta, u_tensor, Tc, u_tensor_error, u_scalar)
C
candanzg 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274
    with pytest.raises(ValueError):
        net2(Ta, u_tensor_error, u_scalar)
    net3 = TensorAssignWithBoolTensorIndexError()
    with pytest.raises(AttributeError):
        net3(Ta, Tb, Tc, u_tensor)
    with pytest.raises(AttributeError):
        net3(Ta, Tb, Tc, u_scalar)
    net4 = TensorAssignWithBoolTensorIndex2Error()
    with pytest.raises(AttributeError):
        net4(Ta, u_tensor)
    with pytest.raises(AttributeError):
        net4(Ta, u_scalar)

Z
zhunaipan 已提交
275
test_cases = [
C
candanzg 已提交
276 277 278 279 280 281 282 283
    ('TensorAssignWithSlice', {
        'block': TensorAssignWithSlice(),
        'desc_inputs': [Ta,  u_tensor],
    }),
    ('TensorAssignWithSlice2', {
        'block': TensorAssignWithSlice2(),
        'desc_inputs': [t_1d,  u_tensor],
    }),
C
candanzg 已提交
284 285 286 287 288 289 290 291
    ('TensorAssignWithBoolTensorIndex', {
        'block': TensorAssignWithBoolTensorIndex(),
        'desc_inputs': [Ta, Tb, Tc, u_tensor, u_scalar],
    }),
    ('TensorAssignWithBoolTensorIndex2', {
        'block': TensorAssignWithBoolTensorIndex2(),
        'desc_inputs': [Ta, u_tensor, u_scalar],
    }),
Z
zhunaipan 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    ('SlicePositive', {
        'block': NetWorkSlicePositive(),
        'desc_inputs': [Tensor(np.ones([6, 8, 10], np.int32))],
    }),
    ('SliceReduceDimension', {
        'block': NetWorkReduceDimension(),
        'desc_inputs': [Tensor(np.ones([6, 8, 10], np.int32))],
    }),
    ('SliceNegative', {
        'block': NetWorkStepNegative(),
        'desc_inputs': [Tensor(np.ones([6, 8, 10], np.int32))],
    }),
    ('SliceReduceToScalar', {
        'block': NetWorkReduceToScalar(),
        'desc_inputs': [Tensor(np.ones([6, 8, 10], np.int32))],
    }),
308 309 310 311
    ('NetWorkSliceEllipsis', {
        'block': NetWorkSliceEllipsis(),
        'desc_inputs': [Tensor(np.ones([6, 7, 8, 9], np.int32))],
    }),
Z
zhunaipan 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
]


@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
def test_compile():
    context.set_context(mode=context.GRAPH_MODE)
    return test_cases


def test_tensor_slice_reduce_out_of_bounds_neg():
    class NetWork(Cell):
        def __init__(self):
            super(NetWork, self).__init__()
            self.tensor_ret = Tensor(np.array(9, np.int32))

        def construct(self, tensor):
            ret = tensor[-7, 3, 4]
            return ret

    input_tensor = Tensor(np.ones([6, 8, 10], np.int32))
    net = NetWork()
    with pytest.raises(ValueError) as ex:
        net(input_tensor)
    assert "The `begin[0]` should be an int and must greater or equal to -6, but got -7" in str(ex.value)


def test_tensor_slice_reduce_out_of_bounds_positive():
    class NetWork(Cell):
        def __init__(self):
            super(NetWork, self).__init__()
            self.tensor_ret = Tensor(np.array(9, np.int32))

        def construct(self, tensor):
            ret = tensor[6, 3, 4]
            return ret

    input_tensor = Tensor(np.ones([6, 8, 10], np.int32))
    net = NetWork()
    with pytest.raises(ValueError) as ex:
        net(input_tensor)
    assert "The `begin[0]` should be an int and must less than 6, but got 6" in str(ex.value)