test_tensor_slice.py 7.6 KB
Newer Older
Z
zhunaipan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test_tensor_slice """
import numpy as np
import pytest

from mindspore import Tensor
from mindspore import context
C
candanzg 已提交
21
from mindspore import dtype as mstype
Z
zhunaipan 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
from mindspore.nn import Cell

from ....mindspore_test_framework.mindspore_test import mindspore_test
from ....mindspore_test_framework.pipeline.forward.compile_forward \
    import pipeline_for_compile_forward_ge_graph_for_case_by_case_config


class NetWorkSlicePositive(Cell):
    def __init__(self):
        super(NetWorkSlicePositive, self).__init__()
        self.tensor_ret0 = Tensor(np.ones([1, 2, 2], np.int32))
        self.tensor_ret1 = Tensor(np.ones([4, 7, 4], np.int32))
        self.tensor_ret2 = Tensor(np.ones([6, 8, 10], np.int32))
        self.tensor_ret3 = Tensor(np.ones([3, 8, 10], np.int32))

    def construct(self, tensor):
        ret0 = tensor[3:4:3, 1:5:2, 3:6:2] + self.tensor_ret0
        ret1 = tensor[-6:4:1, 7:-8:-1, ::3] + self.tensor_ret1
        ret2 = tensor[::, ::, ::] + self.tensor_ret2
        ret3 = tensor[::2] + self.tensor_ret3
        return ret0, ret1, ret2, ret3


class NetWorkReduceDimension(Cell):
    def __init__(self):
        super(NetWorkReduceDimension, self).__init__()
        self.tensor_ret0 = Tensor(np.ones([2, 4, 1], np.int32))
        self.tensor_ret1 = Tensor(np.ones([3, 4], np.int32))
        self.tensor_ret2 = Tensor(np.ones([6, 8], np.int32))
        self.tensor_ret3 = Tensor(np.array(8, np.int32))
        self.tensor_ret4 = Tensor(np.ones([8, 10], np.int32))

    def construct(self, tensor):
        ret0 = tensor[0:6:3, 1:5:1, 3:5:2] + self.tensor_ret0
        ret1 = tensor[::2, 1, ::3] + self.tensor_ret1
        ret2 = tensor[::, ::, 0] + self.tensor_ret2
        ret3 = tensor[3, 2, 5] + self.tensor_ret3
        ret4 = tensor[1] + self.tensor_ret4
        return ret0, ret1, ret2, ret3, ret4


class NetWorkStepNegative(Cell):
    def __init__(self):
        super(NetWorkStepNegative, self).__init__()
        self.tensor_ret = Tensor(np.ones([6, 5, 10], np.int32))

    def construct(self, tensor):
        ret = tensor[::1, -5::, ::-1] + self.tensor_ret
        return ret


class NetWorkReduceToScalar(Cell):
    def __init__(self):
        super(NetWorkReduceToScalar, self).__init__()
        self.tensor_ret = Tensor(np.array(9, np.int32))

    def construct(self, tensor):
        ret = tensor[2, 3, 4] + self.tensor_ret
        return ret


C
candanzg 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
class TensorAssignWithBoolTensorIndex(Cell):
    def __init__(self):
        super(TensorAssignWithBoolTensorIndex, self).__init__()
        self.t = Tensor(np.arange(6).reshape([2,3]), dtype = mstype.float64)

    def construct(self, a, b, c, u_tensor, _scalar):
        a[c] = u_scalar
        a[b] = u_tensor
        z = a + self.t
        return z


class TensorAssignWithBoolTensorIndexError(Cell):
    def __init__(self):
        super(TensorAssignWithBoolTensorIndexError, self).__init__()

    def construct(self, a, b, c, u_tensor):
        a[b][c] = u_tensor
        return a


class TensorAssignWithBoolTensorIndex2(Cell):
    def __init__(self):
        super(TensorAssignWithBoolTensorIndex2, self).__init__()
        self.t = Tensor(np.arange(6).reshape([2,3]), dtype = mstype.float64)

    def construct(self, a, u_tensor, _scalar):
        a[a>8] = u_tensor
        a[a>=6] = u_scalar
        a[a<3] = u_scalar
        a[a<=5] = u_tensor
        a[a==5] = u_scalar
        z = a + self.t
        return z


class TensorAssignWithBoolTensorIndex2Error(Cell):
    def __init__(self):
        super(TensorAssignWithBoolTensorIndex2Error, self).__init__()

    def construct(self, a, u_tensor):
        a[a>8][a>5] = u_tensor
        return a


a = np.random.uniform(1,10,[2,3])
b = a > 5
c = a < 3
Ta = Tensor(a)
Tb = Tensor(b)
Tc = Tensor(c)
Td = Tensor([True, True])
u_tensor = Tensor([1])
u_tensor_error = Tensor([1, 2])
u_scalar = 5


def test_tensor_assign_bool_index():
    net1 = TensorAssignWithBoolTensorIndex()
    net2 = TensorAssignWithBoolTensorIndex2()

    net1(Ta, Tb, Tc, u_tensor, u_scalar)
    with pytest.raises(ValueError):
        net1(Ta, Td, Tc, u_tensor, u_scalar)
    with pytest.raises(ValueError):
        net1(Ta, u_tensor, Tc, u_tensor, u_scalar)
    with pytest.raises(ValueError):
        net1(Ta, Tb, Td, u_tensor, u_scalar)
    with pytest.raises(ValueError):
        net1(Ta, Tb, Ta, u_tensor, u_scalar)
    with pytest.raises(ValueError):
        net1(Ta, Tb, Tc, u_tensor_error, u_scalar)
    #net1(Ta, u_tensor, Tc, u_tensor_error, u_scalar)
    with pytest.raises(ValueError):
        net2(Ta, u_tensor_error, u_scalar)
    net3 = TensorAssignWithBoolTensorIndexError()
    with pytest.raises(AttributeError):
        net3(Ta, Tb, Tc, u_tensor)
    with pytest.raises(AttributeError):
        net3(Ta, Tb, Tc, u_scalar)
    net4 = TensorAssignWithBoolTensorIndex2Error()
    with pytest.raises(AttributeError):
        net4(Ta, u_tensor)
    with pytest.raises(AttributeError):
        net4(Ta, u_scalar)


Z
zhunaipan 已提交
170
test_cases = [
C
candanzg 已提交
171 172 173 174 175 176 177 178
    ('TensorAssignWithBoolTensorIndex', {
        'block': TensorAssignWithBoolTensorIndex(),
        'desc_inputs': [Ta, Tb, Tc, u_tensor, u_scalar],
    }),
    ('TensorAssignWithBoolTensorIndex2', {
        'block': TensorAssignWithBoolTensorIndex2(),
        'desc_inputs': [Ta, u_tensor, u_scalar],
    }),
Z
zhunaipan 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
    ('SlicePositive', {
        'block': NetWorkSlicePositive(),
        'desc_inputs': [Tensor(np.ones([6, 8, 10], np.int32))],
    }),
    ('SliceReduceDimension', {
        'block': NetWorkReduceDimension(),
        'desc_inputs': [Tensor(np.ones([6, 8, 10], np.int32))],
    }),
    ('SliceNegative', {
        'block': NetWorkStepNegative(),
        'desc_inputs': [Tensor(np.ones([6, 8, 10], np.int32))],
    }),
    ('SliceReduceToScalar', {
        'block': NetWorkReduceToScalar(),
        'desc_inputs': [Tensor(np.ones([6, 8, 10], np.int32))],
    }),

]


@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
def test_compile():
    context.set_context(mode=context.GRAPH_MODE)
    return test_cases


def test_tensor_slice_reduce_out_of_bounds_neg():
    class NetWork(Cell):
        def __init__(self):
            super(NetWork, self).__init__()
            self.tensor_ret = Tensor(np.array(9, np.int32))

        def construct(self, tensor):
            ret = tensor[-7, 3, 4]
            return ret

    input_tensor = Tensor(np.ones([6, 8, 10], np.int32))
    net = NetWork()
    with pytest.raises(ValueError) as ex:
        net(input_tensor)
    assert "The `begin[0]` should be an int and must greater or equal to -6, but got -7" in str(ex.value)


def test_tensor_slice_reduce_out_of_bounds_positive():
    class NetWork(Cell):
        def __init__(self):
            super(NetWork, self).__init__()
            self.tensor_ret = Tensor(np.array(9, np.int32))

        def construct(self, tensor):
            ret = tensor[6, 3, 4]
            return ret

    input_tensor = Tensor(np.ones([6, 8, 10], np.int32))
    net = NetWork()
    with pytest.raises(ValueError) as ex:
        net(input_tensor)
    assert "The `begin[0]` should be an int and must less than 6, but got 6" in str(ex.value)