test_grad.py 6.1 KB
Newer Older
Z
zhunaipan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test_grad """
import numpy as np
J
jinyaohui 已提交
17

Z
zhunaipan 已提交
18
import mindspore as ms
J
jinyaohui 已提交
19
import mindspore.ops.operations as P
Z
zhunaipan 已提交
20
from mindspore import Tensor
J
jinyaohui 已提交
21
from mindspore.common.api import ms_function
W
Wei Luning 已提交
22
from mindspore.common.dtype import get_py_obj_dtype
J
jinyaohui 已提交
23
from mindspore.ops import composite as C
W
Wei Luning 已提交
24
from mindspore.ops import functional as F
J
jinyaohui 已提交
25
from mindspore.ops.composite import grad_all_with_sens
Z
zhunaipan 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
from ...ut_filter import non_graph_engine


def mul(x, y):
    return x * y


@ms_function
def mainf(x, y):
    return C.grad(mul)(x, y)


@non_graph_engine
def test_grad():
    mainf(1, 2)


@non_graph_engine
B
buxue 已提交
44
def Xtest_expand_dims_grad():
Z
zhunaipan 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    """ test_expand_dims_grad """
    input_tensor = Tensor(np.array([[2, 2], [2, 2]]))
    expand_dims = P.ExpandDims()

    def fn(x):
        output = expand_dims(x, 0)
        return output

    out = fn(input_tensor)
    gfn = grad_all_with_sens(fn)
    sens = Tensor(np.ones_like(out.asnumpy()))
    args = [input_tensor, sens]
    gout = gfn(*args)
    expect = np.ones([2, 2])
    assert np.all(gout[0].asnumpy() == expect)


def test_cast_grad():
    """ test_cast_grad """
    input_np = np.random.randn(2, 3).astype(np.float32)
    input_x = Tensor(input_np)

    td = ms.int32
    cast = P.Cast()

    def fn(x):
        output = cast(x, td)
        return output

    out = fn(input_x)
    gfn = grad_all_with_sens(fn)
    sens = Tensor(np.ones_like(out.asnumpy()))
    args = [input_x, sens]
    gout = gfn(*args)
    expect = np.ones((2, 3), dtype=np.float32)
    assert np.all(gout[0].asnumpy() == expect)


W
Wei Luning 已提交
83 84 85 86 87 88 89 90 91
def test_scalar_cast_grad():
    """ test_scalar_cast_grad """
    input_x = 255.5
    input_t = get_py_obj_dtype(ms.int8)

    def fx_cast(x):
        output = F.scalar_cast(x, input_t)
        return output

K
kingfo 已提交
92 93 94 95 96
    @ms_function
    def grad_fx_cast(input_x):
        return C.grad(fx_cast)(input_x)

    gfn = grad_fx_cast(input_x)
W
Wei Luning 已提交
97 98 99 100
    expect_dx = 1
    assert gfn == expect_dx


Z
zhunaipan 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
@non_graph_engine
def test_reshape_grad():
    """ test_reshape_grad """
    input_tensor = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]))
    shp = (3, 2)
    reshape = P.Reshape()

    def fn(x):
        output = reshape(x, shp)
        return output

    out = fn(input_tensor)
    gfn = grad_all_with_sens(fn)
    sens = Tensor(np.ones_like(out.asnumpy()))
    args = [input_tensor, sens]
    gout = gfn(*args)
    expect = np.ones([2, 3])
    assert np.all(gout[0].asnumpy() == expect)


def test_transpose_grad():
    """ test_transpose_grad """
    input_tensor = Tensor(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]))
    perm = (0, 2, 1)
    transpose = P.Transpose()

    def fn(x):
        output = transpose(x, perm)
        return output

    out = fn(input_tensor)
    gfn = grad_all_with_sens(fn)
    sens = Tensor(np.ones_like(out.asnumpy()))
    args = [input_tensor, sens]
    gout = gfn(*args)
    expect = np.ones([2, 2, 3])
    assert np.all(gout[0].asnumpy() == expect)


def test_select_grad():
    """ test_select_grad """
    select = P.Select()
    cond = Tensor(np.array([[True, False, False], [False, True, True]]))
    x = Tensor(np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32))
    y = Tensor(np.array([[7, 8, 9], [10, 11, 12]]).astype(np.float32))

    def fn(cond, x, y):
        output = select(cond, x, y)
        return output

    out = fn(cond, x, y)
    gfn = grad_all_with_sens(fn)
    sens = Tensor(np.ones_like(out.asnumpy()).astype(np.float32))
    args = [cond, x, y, sens]
    gout = gfn(*args)
156
    expect_cond = np.zeros_like(cond.asnumpy())
Z
zhunaipan 已提交
157 158 159 160 161
    expect_x = np.array([[1, 0, 0], [0, 1, 1]])
    expect_y = np.array([[0, 1, 1], [1, 0, 0]])
    assert np.all(gout[0].asnumpy() == expect_cond)
    assert np.all(gout[1].asnumpy() == expect_x)
    assert np.all(gout[2].asnumpy() == expect_y)
P
panyifeng 已提交
162

Z
zhunaipan 已提交
163

K
kingfo 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
@non_graph_engine
def test_squeeze_grad():
    """ test_squeeze_grad """
    input_tensor = Tensor(np.ones(shape=[3, 2, 1]))
    squeeze = P.Squeeze(2)

    def fn(x):
        output = squeeze(x)
        return output

    out = fn(input_tensor)
    gfn = grad_all_with_sens(fn)
    sens = Tensor(np.ones_like(out.asnumpy()))
    args = [input_tensor, sens]
    gout = gfn(*args)
    expect = np.ones([3, 2, 1])
    assert np.all(gout[0].asnumpy() == expect)


Z
zhunaipan 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
def test_SubGrad():
    """ test_SubGrad """
    input_x = Tensor(np.array([[2, 2]]))
    input_y = Tensor(np.array([[2, 2], [2, 2]]))
    sub = P.Sub()

    def fn(x, y):
        output = sub(x, y)
        return output

    out = fn(input_x, input_y)
    gfn = grad_all_with_sens(fn)
    sens = Tensor(np.ones_like(out.asnumpy()))
    args = [input_x, input_y, sens]
    gout = gfn(*args)
    expect_dx = np.ones([1, 2]).astype(np.int32) * 2  # reduce sum dout to the shape of x
    expect_dy = np.ones([2, 2]).astype(np.int32) * (-1)
    assert np.array_equal(gout[0].asnumpy(), expect_dx)
    assert np.array_equal(gout[1].asnumpy(), expect_dy)


def test_MulGrad():
    """ test_MulGrad """
    input_x = Tensor(np.array([[2, 2], [2, 2]], np.float32))
    input_y = Tensor(np.array([[3, 3], [3, 3]], np.float32))
P
panyifeng 已提交
208
    mymul = P.Mul()
Z
zhunaipan 已提交
209 210

    def fn(x, y):
P
panyifeng 已提交
211
        output = mymul(x, y)
Z
zhunaipan 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224
        return output

    out = fn(input_x, input_y)
    gfn = grad_all_with_sens(fn)
    sens = Tensor(np.ones_like(out.asnumpy()) * 3)
    args = [input_x, input_y, sens]
    gout = gfn(*args)
    expect_dx = np.ones([2, 2], np.float32) * 9
    expect_dy = np.ones([2, 2], np.float32) * 6
    assert np.all(gout[0].asnumpy().shape == expect_dx.shape)
    assert np.all(gout[0].asnumpy() == expect_dx)
    assert np.all(gout[1].asnumpy().shape == expect_dy.shape)
    assert np.all(gout[1].asnumpy() == expect_dy)