test_logical_op.py 3.0 KB
Newer Older
V
VectorSL 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

import pytest
from mindspore.ops import operations as P
from mindspore.nn import Cell
from mindspore.common.tensor import Tensor
import mindspore.context as context
import numpy as np


class NetAnd(Cell):
    def __init__(self):
        super(NetAnd, self).__init__()
        self.logicaland = P.LogicalAnd()

    def construct(self, x, y):
        return self.logicaland(x, y)

class NetOr(Cell):
    def __init__(self):
        super(NetOr, self).__init__()
        self.logicalor = P.LogicalOr()

    def construct(self, x, y):
        return self.logicalor(x, y)

class NetNot(Cell):
    def __init__(self):
        super(NetNot, self).__init__()
        self.logicalnot = P.LogicalNot()

    def construct(self, x):
        return self.logicalnot(x)

x = np.array([True, False, False]).astype(np.bool)
y = np.array([False]).astype(np.bool)

@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_logicaland():
    context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
    logicaland = NetAnd()
    output = logicaland(Tensor(x), Tensor(y))
    assert np.all(output.asnumpy() == np.logical_and(x, y))

    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
    logicaland = NetAnd()
    output = logicaland(Tensor(x), Tensor(y))
    assert np.all(output.asnumpy() == np.logical_and(x, y))

@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_logicalor():
    context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
    logicalor = NetOr()
    output = logicalor(Tensor(x), Tensor(y))
    assert np.all(output.asnumpy() == np.logical_or(x, y))

    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
    logicalor = NetOr()
    output = logicalor(Tensor(x), Tensor(y))
    assert np.all(output.asnumpy() == np.logical_or(x, y))

@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_logicalnot():
    context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
    logicalnot = NetNot()
    output = logicalnot(Tensor(x))
    assert np.all(output.asnumpy() == np.logical_not(x))

    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
    logicalnot = NetNot()
    output = logicalnot(Tensor(x))
    assert np.all(output.asnumpy() == np.logical_not(x))