# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest from mindspore.ops import operations as P from mindspore.nn import Cell from mindspore.common.tensor import Tensor import mindspore.context as context import numpy as np class NetAnd(Cell): def __init__(self): super(NetAnd, self).__init__() self.logicaland = P.LogicalAnd() def construct(self, x, y): return self.logicaland(x, y) class NetOr(Cell): def __init__(self): super(NetOr, self).__init__() self.logicalor = P.LogicalOr() def construct(self, x, y): return self.logicalor(x, y) class NetNot(Cell): def __init__(self): super(NetNot, self).__init__() self.logicalnot = P.LogicalNot() def construct(self, x): return self.logicalnot(x) x = np.array([True, False, False]).astype(np.bool) y = np.array([False]).astype(np.bool) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_logicaland(): context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") logicaland = NetAnd() output = logicaland(Tensor(x), Tensor(y)) assert np.all(output.asnumpy() == np.logical_and(x, y)) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") logicaland = NetAnd() output = logicaland(Tensor(x), Tensor(y)) assert np.all(output.asnumpy() == np.logical_and(x, y)) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_logicalor(): context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") logicalor = NetOr() output = logicalor(Tensor(x), Tensor(y)) assert np.all(output.asnumpy() == np.logical_or(x, y)) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") logicalor = NetOr() output = logicalor(Tensor(x), Tensor(y)) assert np.all(output.asnumpy() == np.logical_or(x, y)) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_logicalnot(): context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") logicalnot = NetNot() output = logicalnot(Tensor(x)) assert np.all(output.asnumpy() == np.logical_not(x)) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") logicalnot = NetNot() output = logicalnot(Tensor(x)) assert np.all(output.asnumpy() == np.logical_not(x))