test_comparison_function_info.py 9.3 KB
Newer Older
Z
zhunaipan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import mindspore as ms
from mindspore import context
import mindspore.nn as nn
from mindspore.ops import operations as P
from mindspore import Tensor
from tests.ut.python.ops.test_math_ops import VirtualLoss
from mindspore.common.api import _executor
from mindspore.ops import composite as C


class NetWithLoss(nn.Cell):
    def __init__(self, network):
        super(NetWithLoss, self).__init__()
        self.loss = VirtualLoss()
        self.network = network

    def construct(self, x, y, b):
        predict = self.network(x, y, b)
        return self.loss(predict)


class GradWrap(nn.Cell):
    def __init__(self, network):
        super(GradWrap, self).__init__()
        self.network = network

    def construct(self, x, y, b):
        return C.grad_all(self.network)(x, y, b)

def test_matmul_equal():
    class Net(nn.Cell):
        def __init__(self, strategy1, strategy2):
            super().__init__()
            self.matmul = P.MatMul().set_strategy(strategy1)
            self.equal = P.Equal().set_strategy(strategy2)

        def construct(self, x, y, b):
            out = self.matmul(x, y)
            out = self.equal(out, b)
            return out

L
lichenever 已提交
57
    context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
Z
zhunaipan 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
    strategy1 = ((2, 2), (2, 2))
    strategy2 = ((4, 2), (4, 2))
    net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))

    x = Tensor(np.ones([128, 32]), dtype=ms.float32)
    y = Tensor(np.ones([32, 64]), dtype=ms.float32)
    b = Tensor(np.ones([128, 64]), dtype=ms.float32)
    _executor.compile(net, x, y, b)


def test_matmul_not_equal():
    class Net(nn.Cell):
        def __init__(self, strategy1, strategy2):
            super().__init__()
            self.matmul = P.MatMul().set_strategy(strategy1)
            self.notequal = P.NotEqual().set_strategy(strategy2)

        def construct(self, x, y, b):
            out = self.matmul(x, y)
            out = self.notequal(out, b)
            return out

L
lichenever 已提交
80
    context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
Z
zhunaipan 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    strategy1 = ((2, 2), (2, 2))
    strategy2 = ((4, 2), (4, 2))
    net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))

    x = Tensor(np.ones([128, 32]), dtype=ms.float32)
    y = Tensor(np.ones([32, 64]), dtype=ms.float32)
    b = Tensor(np.ones([128, 64]), dtype=ms.float32)
    _executor.compile(net, x, y, b)


def test_matmul_not_equal_repeated_calculation():
    class Net(nn.Cell):
        def __init__(self, strategy1, strategy2):
            super().__init__()
            self.matmul = P.MatMul().set_strategy(strategy1)
            self.notequal = P.NotEqual().set_strategy(strategy2)

        def construct(self, x, y, b):
            out = self.matmul(x, y)
            out = self.notequal(out, b)
            return out

L
lichenever 已提交
103
    context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
Z
zhunaipan 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    strategy1 = ((2, 2), (2, 2))
    strategy2 = ((4, 1), (4, 1))
    net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))

    x = Tensor(np.ones([128, 32]), dtype=ms.float32)
    y = Tensor(np.ones([32, 64]), dtype=ms.float32)
    b = Tensor(np.ones([128, 64]), dtype=ms.float32)
    _executor.compile(net, x, y, b)


def test_matmul_maximum():
    class Net(nn.Cell):
        def __init__(self, strategy1, strategy2):
            super().__init__()
            self.matmul = P.MatMul().set_strategy(strategy1)
            self.maximum = P.Maximum().set_strategy(strategy2)

        def construct(self, x, y, b):
            out = self.matmul(x, y)
            out = self.maximum(out, b)
            return out

L
lichenever 已提交
126
    context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
Z
zhunaipan 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    strategy1 = ((2, 2), (2, 2))
    strategy2 = ((4, 2), (4, 2))
    net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))

    x = Tensor(np.ones([64, 32]), dtype=ms.float32)
    y = Tensor(np.ones([32, 64]), dtype=ms.float32)
    b = Tensor(np.ones([64, 64]), dtype=ms.float32)
    _executor.compile(net, x, y, b)


def test_matmul_maximum_broadcast():
    class Net(nn.Cell):
        def __init__(self, strategy1, strategy2):
            super().__init__()
            self.matmul = P.MatMul().set_strategy(strategy1)
            self.maximum = P.Maximum().set_strategy(strategy2)

        def construct(self, x, y, b):
            out = self.matmul(x, y)
            out = self.maximum(out, b)
            return out

L
lichenever 已提交
149
    context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
Z
zhunaipan 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    strategy1 = ((2, 2), (2, 2))
    strategy2 = ((4, 2), (2, ))
    net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))

    x = Tensor(np.ones([64, 32]), dtype=ms.float32)
    y = Tensor(np.ones([32, 64]), dtype=ms.float32)
    b = Tensor(np.ones([64]), dtype=ms.float32)
    _executor.compile(net, x, y, b)


def test_matmul_maximum_broadcast2():
    class Net(nn.Cell):
        def __init__(self, strategy1, strategy2):
            super().__init__()
            self.matmul = P.MatMul().set_strategy(strategy1)
            self.maximum = P.Maximum().set_strategy(strategy2)

        def construct(self, x, y, b):
            out = self.matmul(x, y)
            out = self.maximum(out, b)
            return out

L
lichenever 已提交
172
    context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
Z
zhunaipan 已提交
173 174 175 176 177 178 179
    strategy1 = ((2, 4), (4, 1))
    strategy2 = ((4, 1), (1, 2))
    net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))

    x = Tensor(np.ones([64, 32]), dtype=ms.float32)
    y = Tensor(np.ones([32, 1]), dtype=ms.float32)
    b = Tensor(np.ones([1, 64]), dtype=ms.float32)
L
lichenever 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    _executor.compile(net, x, y, b)


def test_matmul_minimum():
    class Net(nn.Cell):
        def __init__(self, strategy1, strategy2):
            super().__init__()
            self.matmul = P.MatMul().set_strategy(strategy1)
            self.minimum = P.Minimum().set_strategy(strategy2)

        def construct(self, x, y, b):
            out = self.matmul(x, y)
            out = self.minimum(out, b)
            return out

    context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
    strategy1 = ((2, 2), (2, 2))
    strategy2 = ((4, 2), (4, 2))
    net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))

    x = Tensor(np.ones([64, 32]), dtype=ms.float32)
    y = Tensor(np.ones([32, 64]), dtype=ms.float32)
    b = Tensor(np.ones([64, 64]), dtype=ms.float32)
    _executor.compile(net, x, y, b)


def test_matmul_minimum_broadcast():
    class Net(nn.Cell):
        def __init__(self, strategy1, strategy2):
            super().__init__()
            self.matmul = P.MatMul().set_strategy(strategy1)
            self.minimum = P.Maximum().set_strategy(strategy2)

        def construct(self, x, y, b):
            out = self.matmul(x, y)
            out = self.minimum(out, b)
            return out

    context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
    strategy1 = ((2, 2), (2, 2))
    strategy2 = ((4, 2), (2, ))
    net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))

    x = Tensor(np.ones([64, 32]), dtype=ms.float32)
    y = Tensor(np.ones([32, 64]), dtype=ms.float32)
    b = Tensor(np.ones([64]), dtype=ms.float32)
    _executor.compile(net, x, y, b)


def test_matmul_minimum_broadcast2():
    class Net(nn.Cell):
        def __init__(self, strategy1, strategy2):
            super().__init__()
            self.matmul = P.MatMul().set_strategy(strategy1)
            self.minimum = P.Minimum().set_strategy(strategy2)

        def construct(self, x, y, b):
            out = self.matmul(x, y)
            out = self.minimum(out, b)
            return out

    context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
    strategy1 = ((2, 4), (4, 1))
    strategy2 = ((4, 1), (1, 2))
    net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))

    x = Tensor(np.ones([64, 32]), dtype=ms.float32)
    y = Tensor(np.ones([32, 1]), dtype=ms.float32)
    b = Tensor(np.ones([1, 64]), dtype=ms.float32)
    _executor.compile(net, x, y, b)


def test_matmul_minimum_auto_parallel():
    class Net(nn.Cell):
        def __init__(self):
            super().__init__()
            self.matmul = P.MatMul()
            self.minimum = P.Minimum()

        def construct(self, x, y, b):
            out = self.matmul(x, y)
            out = self.minimum(out, b)
            return out

    context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel")
    net = GradWrap(NetWithLoss(Net()))

    x = Tensor(np.ones([64, 32]), dtype=ms.float32)
    y = Tensor(np.ones([32, 1]), dtype=ms.float32)
    b = Tensor(np.ones([1, 64]), dtype=ms.float32)
    _executor.compile(net, x, y, b)