test_comparison_function_info.py 6.4 KB
Newer Older
Z
zhunaipan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import mindspore as ms
from mindspore import context
import mindspore.nn as nn
from mindspore.ops import operations as P
from mindspore import Tensor
from tests.ut.python.ops.test_math_ops import VirtualLoss
from mindspore.common.api import _executor
from mindspore.ops import composite as C


class NetWithLoss(nn.Cell):
    def __init__(self, network):
        super(NetWithLoss, self).__init__()
        self.loss = VirtualLoss()
        self.network = network

    def construct(self, x, y, b):
        predict = self.network(x, y, b)
        return self.loss(predict)


class GradWrap(nn.Cell):
    def __init__(self, network):
        super(GradWrap, self).__init__()
        self.network = network

    def construct(self, x, y, b):
        return C.grad_all(self.network)(x, y, b)

def test_matmul_equal():
    class Net(nn.Cell):
        def __init__(self, strategy1, strategy2):
            super().__init__()
            self.matmul = P.MatMul().set_strategy(strategy1)
            self.equal = P.Equal().set_strategy(strategy2)

        def construct(self, x, y, b):
            out = self.matmul(x, y)
            out = self.equal(out, b)
            return out

    context.set_auto_parallel_context(device_num=8, global_rank=0)
    strategy1 = ((2, 2), (2, 2))
    strategy2 = ((4, 2), (4, 2))
    net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")

    x = Tensor(np.ones([128, 32]), dtype=ms.float32)
    y = Tensor(np.ones([32, 64]), dtype=ms.float32)
    b = Tensor(np.ones([128, 64]), dtype=ms.float32)
    _executor.compile(net, x, y, b)


def test_matmul_not_equal():
    class Net(nn.Cell):
        def __init__(self, strategy1, strategy2):
            super().__init__()
            self.matmul = P.MatMul().set_strategy(strategy1)
            self.notequal = P.NotEqual().set_strategy(strategy2)

        def construct(self, x, y, b):
            out = self.matmul(x, y)
            out = self.notequal(out, b)
            return out

    context.set_auto_parallel_context(device_num=8, global_rank=0)
    strategy1 = ((2, 2), (2, 2))
    strategy2 = ((4, 2), (4, 2))
    net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")

    x = Tensor(np.ones([128, 32]), dtype=ms.float32)
    y = Tensor(np.ones([32, 64]), dtype=ms.float32)
    b = Tensor(np.ones([128, 64]), dtype=ms.float32)
    _executor.compile(net, x, y, b)


def test_matmul_not_equal_repeated_calculation():
    class Net(nn.Cell):
        def __init__(self, strategy1, strategy2):
            super().__init__()
            self.matmul = P.MatMul().set_strategy(strategy1)
            self.notequal = P.NotEqual().set_strategy(strategy2)

        def construct(self, x, y, b):
            out = self.matmul(x, y)
            out = self.notequal(out, b)
            return out

    context.set_auto_parallel_context(device_num=8, global_rank=0)
    strategy1 = ((2, 2), (2, 2))
    strategy2 = ((4, 1), (4, 1))
    net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")

    x = Tensor(np.ones([128, 32]), dtype=ms.float32)
    y = Tensor(np.ones([32, 64]), dtype=ms.float32)
    b = Tensor(np.ones([128, 64]), dtype=ms.float32)
    _executor.compile(net, x, y, b)


def test_matmul_maximum():
    class Net(nn.Cell):
        def __init__(self, strategy1, strategy2):
            super().__init__()
            self.matmul = P.MatMul().set_strategy(strategy1)
            self.maximum = P.Maximum().set_strategy(strategy2)

        def construct(self, x, y, b):
            out = self.matmul(x, y)
            out = self.maximum(out, b)
            return out

    context.set_auto_parallel_context(device_num=8, global_rank=0)
    strategy1 = ((2, 2), (2, 2))
    strategy2 = ((4, 2), (4, 2))
    net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")

    x = Tensor(np.ones([64, 32]), dtype=ms.float32)
    y = Tensor(np.ones([32, 64]), dtype=ms.float32)
    b = Tensor(np.ones([64, 64]), dtype=ms.float32)
    _executor.compile(net, x, y, b)


def test_matmul_maximum_broadcast():
    class Net(nn.Cell):
        def __init__(self, strategy1, strategy2):
            super().__init__()
            self.matmul = P.MatMul().set_strategy(strategy1)
            self.maximum = P.Maximum().set_strategy(strategy2)

        def construct(self, x, y, b):
            out = self.matmul(x, y)
            out = self.maximum(out, b)
            return out

    context.set_auto_parallel_context(device_num=8, global_rank=0)
    strategy1 = ((2, 2), (2, 2))
    strategy2 = ((4, 2), (2, ))
    net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")

    x = Tensor(np.ones([64, 32]), dtype=ms.float32)
    y = Tensor(np.ones([32, 64]), dtype=ms.float32)
    b = Tensor(np.ones([64]), dtype=ms.float32)
    _executor.compile(net, x, y, b)


def test_matmul_maximum_broadcast2():
    class Net(nn.Cell):
        def __init__(self, strategy1, strategy2):
            super().__init__()
            self.matmul = P.MatMul().set_strategy(strategy1)
            self.maximum = P.Maximum().set_strategy(strategy2)

        def construct(self, x, y, b):
            out = self.matmul(x, y)
            out = self.maximum(out, b)
            return out

    context.set_auto_parallel_context(device_num=8, global_rank=0)
    strategy1 = ((2, 4), (4, 1))
    strategy2 = ((4, 1), (1, 2))
    net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")

    x = Tensor(np.ones([64, 32]), dtype=ms.float32)
    y = Tensor(np.ones([32, 1]), dtype=ms.float32)
    b = Tensor(np.ones([1, 64]), dtype=ms.float32)
    _executor.compile(net, x, y, b)