train.py 5.9 KB
Newer Older
W
wandongdong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train_imagenet."""
import os
import argparse
from mindspore import context
from mindspore import Tensor
from mindspore.parallel._auto_parallel_context import auto_parallel_context
from mindspore.nn.optim.momentum import Momentum
from mindspore.train.model import Model, ParallelMode
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from mindspore.train.serialization import load_checkpoint
C
chenzupeng 已提交
26
from mindspore.communication.management import init
W
wandongdong 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
import mindspore.nn as nn
import mindspore.common.initializer as weight_init
from models.resnet_quant import resnet50_quant
from src.dataset import create_dataset
from src.lr_generator import get_lr
from src.config import config
from src.crossentropy import CrossEntropy
from src.utils import _load_param_into_net

parser = argparse.ArgumentParser(description='Image classification')
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
parser.add_argument('--device_num', type=int, default=1, help='Device num.')
parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.')
parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.')
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
parser.add_argument('--device_target', type=str, default='Ascend', help='Device target')
parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
args_opt = parser.parse_args()

if __name__ == '__main__':
    target = args_opt.device_target
    ckpt_save_dir = config.save_checkpoint_path
    context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False)
    if not args_opt.do_eval and args_opt.run_distribute:
        if target == "Ascend":
            device_id = int(os.getenv('DEVICE_ID'))
            context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id,
                                enable_auto_mixed_precision=True)
            init()
            context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
                                              mirror_mean=True)
            auto_parallel_context().set_all_reduce_fusion_split_indices([107, 160])
            ckpt_save_dir = config.save_checkpoint_path
C
chenzupeng 已提交
60 61
        else:
            raise ValueError("Unsupport platform.")
W
wandongdong 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    epoch_size = config.epoch_size
    net = resnet50_quant(class_num=config.class_num)
    net.set_train(True)
    print("========resnet50:\r\n{}".format(net))

    # weight init
    if args_opt.pre_trained:
        param_dict = load_checkpoint(args_opt.pre_trained)
        _load_param_into_net(net, param_dict)
        epoch_size = config.epoch_size - config.pretrained_epoch_size
    else:
        for _, cell in net.cells_and_names():
            if isinstance(cell, nn.Conv2d):
                cell.weight.default_input = weight_init.initializer(weight_init.XavierUniform(),
                                                                    cell.weight.default_input.shape(),
                                                                    cell.weight.default_input.dtype()).to_tensor()
            if isinstance(cell, nn.Dense):
                cell.weight.default_input = weight_init.initializer(weight_init.TruncatedNormal(),
                                                                    cell.weight.default_input.shape(),
                                                                    cell.weight.default_input.dtype()).to_tensor()
    if not config.use_label_smooth:
        config.label_smooth_factor = 0.0

    loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num)

    if args_opt.do_train:
        dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True,
                                 repeat_num=epoch_size, batch_size=config.batch_size, target=target)
        step_size = dataset.get_dataset_size()

        loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
        lr = get_lr(lr_init=config.lr_init, lr_end=0.0, lr_max=config.lr_max, warmup_epochs=config.warmup_epochs,
                    total_epochs=config.epoch_size, steps_per_epoch=step_size, lr_decay_mode='cosine')
        if args_opt.pre_trained:
            lr = lr[config.pretrained_epoch_size * step_size:]
        lr = Tensor(lr)

        opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum,
                       config.weight_decay, config.loss_scale)
        model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'})

        time_cb = TimeMonitor(data_size=step_size)
        loss_cb = LossMonitor()
        cb = [time_cb, loss_cb]
        if config.save_checkpoint:
            config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs*step_size,
                                         keep_checkpoint_max=config.keep_checkpoint_max)
            ckpt_cb = ModelCheckpoint(prefix="resnet", directory=ckpt_save_dir, config=config_ck)
            cb += [ckpt_cb]
        model.train(epoch_size, dataset, callbacks=cb)