# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """train_imagenet.""" import os import argparse from mindspore import context from mindspore import Tensor from mindspore.parallel._auto_parallel_context import auto_parallel_context from mindspore.nn.optim.momentum import Momentum from mindspore.train.model import Model, ParallelMode from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor from mindspore.train.loss_scale_manager import FixedLossScaleManager from mindspore.train.serialization import load_checkpoint from mindspore.communication.management import init import mindspore.nn as nn import mindspore.common.initializer as weight_init from models.resnet_quant import resnet50_quant from src.dataset import create_dataset from src.lr_generator import get_lr from src.config import config from src.crossentropy import CrossEntropy from src.utils import _load_param_into_net parser = argparse.ArgumentParser(description='Image classification') parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute') parser.add_argument('--device_num', type=int, default=1, help='Device num.') parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.') parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.') parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') parser.add_argument('--device_target', type=str, default='Ascend', help='Device target') parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path') args_opt = parser.parse_args() if __name__ == '__main__': target = args_opt.device_target ckpt_save_dir = config.save_checkpoint_path context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False) if not args_opt.do_eval and args_opt.run_distribute: if target == "Ascend": device_id = int(os.getenv('DEVICE_ID')) context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id, enable_auto_mixed_precision=True) init() context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True) auto_parallel_context().set_all_reduce_fusion_split_indices([107, 160]) ckpt_save_dir = config.save_checkpoint_path else: raise ValueError("Unsupport platform.") epoch_size = config.epoch_size net = resnet50_quant(class_num=config.class_num) net.set_train(True) print("========resnet50:\r\n{}".format(net)) # weight init if args_opt.pre_trained: param_dict = load_checkpoint(args_opt.pre_trained) _load_param_into_net(net, param_dict) epoch_size = config.epoch_size - config.pretrained_epoch_size else: for _, cell in net.cells_and_names(): if isinstance(cell, nn.Conv2d): cell.weight.default_input = weight_init.initializer(weight_init.XavierUniform(), cell.weight.default_input.shape(), cell.weight.default_input.dtype()).to_tensor() if isinstance(cell, nn.Dense): cell.weight.default_input = weight_init.initializer(weight_init.TruncatedNormal(), cell.weight.default_input.shape(), cell.weight.default_input.dtype()).to_tensor() if not config.use_label_smooth: config.label_smooth_factor = 0.0 loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num) if args_opt.do_train: dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, repeat_num=epoch_size, batch_size=config.batch_size, target=target) step_size = dataset.get_dataset_size() loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False) lr = get_lr(lr_init=config.lr_init, lr_end=0.0, lr_max=config.lr_max, warmup_epochs=config.warmup_epochs, total_epochs=config.epoch_size, steps_per_epoch=step_size, lr_decay_mode='cosine') if args_opt.pre_trained: lr = lr[config.pretrained_epoch_size * step_size:] lr = Tensor(lr) opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, config.weight_decay, config.loss_scale) model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'}) time_cb = TimeMonitor(data_size=step_size) loss_cb = LossMonitor() cb = [time_cb, loss_cb] if config.save_checkpoint: config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs*step_size, keep_checkpoint_max=config.keep_checkpoint_max) ckpt_cb = ModelCheckpoint(prefix="resnet", directory=ckpt_save_dir, config=config_ck) cb += [ckpt_cb] model.train(epoch_size, dataset, callbacks=cb)