test_tensor.py 12.6 KB
Newer Older
Z
zhunaipan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
@File  : test_tensor.py
@Author:
@Date  : 2019-03-14
@Desc  : test mindspore tensor's operation
"""
import numpy as np
import pytest

import mindspore as ms
import mindspore.common.api as me
import mindspore.nn as nn
K
kingfo 已提交
27
from mindspore import Tensor
W
Wei Luning 已提交
28
from mindspore.common.initializer import initializer
J
jinyaohui 已提交
29
from mindspore.common.parameter import Parameter
Z
zhunaipan 已提交
30 31 32 33
from ..ut_filter import non_graph_engine

ndarr = np.ones((2, 3))

J
jinyaohui 已提交
34

Z
zhunaipan 已提交
35 36
def test_tensor_flatten():
    with pytest.raises(AttributeError):
J
jinyaohui 已提交
37
        lst = [1, 2, 3, 4, ]
Z
zhunaipan 已提交
38 39 40 41
        tensor_list = ms.Tensor(lst, ms.float32)
        tensor_list = tensor_list.Flatten()
        print(tensor_list)

J
jinyaohui 已提交
42

Z
zhunaipan 已提交
43 44 45 46 47
def test_tensor_list():
    lst = [[1.0, 2.0, 1.0], [1.0, 10.0, 9.0]]
    tensor_list = ms.Tensor(lst, ms.float32)
    print(tensor_list)

J
jinyaohui 已提交
48

Z
zhunaipan 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
def test_tensor():
    """test_tensor"""
    t1 = ms.Tensor(ndarr)
    assert isinstance(t1, ms.Tensor)
    assert t1.dtype() == ms.float64

    t2 = ms.Tensor(np.zeros([1, 2, 3]), ms.float32)
    assert isinstance(t2, ms.Tensor)
    assert t2.shape() == (1, 2, 3)
    assert t2.dtype() == ms.float32

    t3 = ms.Tensor(0.1)
    assert isinstance(t3, ms.Tensor)
    assert t3.dtype() == ms.float64

    t4 = ms.Tensor(1)
    assert isinstance(t4, ms.Tensor)
    assert t4.dtype() == ms.int64

J
jinyaohui 已提交
68

Z
zhunaipan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
def test_tensor_type_float16():
    t_float16 = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float16))
    assert isinstance(t_float16, ms.Tensor)
    assert t_float16.shape() == (2, 3)
    assert t_float16.dtype() == ms.float16


def test_tensor_type_float32():
    t_float32 = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32))
    assert isinstance(t_float32, ms.Tensor)
    assert t_float32.shape() == (2, 3)
    assert t_float32.dtype() == ms.float32


def test_tensor_type_float32_user_define():
    t = ms.Tensor(np.zeros([1, 2, 3]), ms.float32)
    assert isinstance(t, ms.Tensor)
    assert t.shape() == (1, 2, 3)
    assert t.dtype() == ms.float32


def test_tensor_type_float64():
    t = ms.Tensor([[1.0, 2, 3], [4, 5, 6]])
    assert isinstance(t, ms.Tensor)
    assert t.shape() == (2, 3)
    assert t.dtype() == ms.float64

    t_zero = ms.Tensor(np.zeros([1, 2, 3]))
    assert isinstance(t_zero, ms.Tensor)
    assert t_zero.shape() == (1, 2, 3)
    assert t_zero.dtype() == ms.float64


def test_tensor_type_float64_user_define():
    t = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=float))
    assert isinstance(t, ms.Tensor)
    assert t.shape() == (2, 3)
    assert t.dtype() == ms.float64

    t_float64 = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]]), ms.float64)
    assert isinstance(t_float64, ms.Tensor)
    assert t_float64.shape() == (2, 3)
    assert t_float64.dtype() == ms.float64

J
jinyaohui 已提交
113

Z
zhunaipan 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
def test_tensor_type_bool():
    # init a tensor with bool type
    ts_bool_array = ms.Tensor(np.zeros([2, 3], np.bool), ms.bool_)
    assert isinstance(ts_bool_array, ms.Tensor)
    assert ts_bool_array.dtype() == ms.bool_

    t_bool = ms.Tensor(True)
    assert isinstance(t_bool, ms.Tensor)
    assert t_bool.dtype() == ms.bool_

    t_bool_array = ms.Tensor(np.array([[True, False, True], [False, False, False]]))
    assert isinstance(t_bool_array, ms.Tensor)
    assert t_bool_array.shape() == (2, 3)
    assert t_bool_array.dtype() == ms.bool_

J
jinyaohui 已提交
129

Z
zhunaipan 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
def test_tensor_type_int8():
    t_int8_array = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int8))
    assert isinstance(t_int8_array, ms.Tensor)
    assert t_int8_array.shape() == (2, 3)
    assert t_int8_array.dtype() == ms.int8


def test_tensor_type_int16():
    t_int16_array = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int16))
    assert isinstance(t_int16_array, ms.Tensor)
    assert t_int16_array.shape() == (2, 3)
    assert t_int16_array.dtype() == ms.int16


def test_tensor_type_int32():
    t_int = ms.Tensor([[1, 2, 3], [4, 5, 6]])
    assert isinstance(t_int, ms.Tensor)
    assert t_int.shape() == (2, 3)
    assert t_int.dtype() == ms.int64

    t_int_array = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32))
    assert isinstance(t_int_array, ms.Tensor)
    assert t_int_array.shape() == (2, 3)
    assert t_int_array.dtype() == ms.int32


def test_tensor_type_int64():
    t_int64 = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int64))
    assert isinstance(t_int64, ms.Tensor)
    assert t_int64.shape() == (2, 3)
    assert t_int64.dtype() == ms.int64

J
jinyaohui 已提交
162

Z
zhunaipan 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
def test_tensor_type_uint8():
    t_uint8_array = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint8))
    assert isinstance(t_uint8_array, ms.Tensor)
    assert t_uint8_array.shape() == (2, 3)
    assert t_uint8_array.dtype() == ms.uint8


def test_tensor_type_uint16():
    t_uint16_array = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint16))
    assert isinstance(t_uint16_array, ms.Tensor)
    assert t_uint16_array.shape() == (2, 3)
    assert t_uint16_array.dtype() == ms.uint16


def test_tensor_type_uint32():
    t_uint32_array = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint32))
    assert isinstance(t_uint32_array, ms.Tensor)
    assert t_uint32_array.shape() == (2, 3)
    assert t_uint32_array.dtype() == ms.uint32


def test_tensor_type_uint64():
    t_uint64 = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint64))
    assert isinstance(t_uint64, ms.Tensor)
    assert t_uint64.shape() == (2, 3)
    assert t_uint64.dtype() == ms.uint64

J
jinyaohui 已提交
190

Z
zhunaipan 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
def test_set_type():
    t = ms.Tensor(ndarr)
    t.set_dtype(ms.float32)
    assert t.dtype() == ms.float32


@non_graph_engine
def test_add():
    x = ms.Tensor(ndarr)
    y = ms.Tensor(ndarr)
    z = x + y
    assert isinstance(z, ms.Tensor)


@non_graph_engine
def test_sub():
    x = ms.Tensor(ndarr)
    y = ms.Tensor(ndarr)
    z = x - y
    assert isinstance(z, ms.Tensor)

J
jinyaohui 已提交
212

W
Wei Luning 已提交
213 214
@non_graph_engine
def test_div():
J
jinyaohui 已提交
215 216
    x = ms.Tensor(np.array([[2, 6, 10], [12, 4, 8]]).astype(np.float32))
    y = ms.Tensor(np.array([[2, 2, 5], [6, 1, 2]]).astype(np.float32))
W
Wei Luning 已提交
217 218 219 220 221
    z = x / y
    z2 = x / 2
    assert isinstance(z, ms.Tensor)
    assert isinstance(z2, ms.Tensor)

J
jinyaohui 已提交
222

W
Wei Luning 已提交
223 224 225 226 227 228
@non_graph_engine
def test_parameter():
    x = Parameter(initializer(1, [1], ms.float32), name="beta1_power")
    z = x / 2
    print(z)

Z
zhunaipan 已提交
229 230 231

class Net(nn.Cell):
    """Net definition"""
J
jinyaohui 已提交
232

Z
zhunaipan 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
    def __init__(self, dim):
        super(Net, self).__init__()
        self.dim = dim

    def construct(self, input_x):
        return input_x


@non_graph_engine
def test_return_tensor():
    """test_return_tensor"""
    net = Net(0)
    input_data = ms.Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32'))
    input_data.set_dtype(ms.float32)
    exe = me._executor
    exe.compile(net, input_data)
    tensor_ = exe(net, input_data)

    # get shape
    shape_ = tensor_.shape()
    print("shape = ", shape_)

    # get type
    type_ = tensor_.dtype()
    print("type = ", type_)

    # get value
    value_ = tensor_.asnumpy()
    print("numpy value = ", value_)


def test_tensor_contiguous():
    """test_tensor_contiguous"""
    input_c = np.arange(6).reshape(2, 3)
    input_f = input_c.T
    np.ascontiguousarray(input_c, dtype=np.float32)
    assert True, input_c.flags['C_CONTIGUOUS']

    print("input_f flags = ", input_f.flags)
    assert True, input_f.flags['F_CONTIGUOUS']

    tensor_f_float32 = ms.Tensor(input_f)
    rt_f = tensor_f_float32.asnumpy()
    assert True, rt_f.flags['C_CONTIGUOUS']
    print("rt_f flags = ", rt_f.flags)

J
jinyaohui 已提交
279

Z
zhunaipan 已提交
280 281 282 283 284 285 286 287
def test_tensor_contiguous2():
    input_data = np.random.randn(32, 112, 112, 3).astype(np.float32)
    input_me = input_data.transpose(0, 3, 1, 2)
    print("input_me flags = ", input_me.flags)
    tensor_f_float32 = ms.Tensor(input_me)
    out_f = tensor_f_float32.asnumpy()
    print("out_f flags = ", out_f.flags)

J
jinyaohui 已提交
288

Z
zhunaipan 已提交
289 290 291 292 293
def test_tensor_input_string():
    with pytest.raises(TypeError):
        input_data = 'ccc'
        ms.Tensor(input_data)

J
jinyaohui 已提交
294

Z
zhunaipan 已提交
295 296 297 298 299
def test_tensor_input_tuple_string():
    with pytest.raises(TypeError):
        input_data = (2, 3, '4', 5)
        ms.Tensor(input_data)

J
jinyaohui 已提交
300

Z
zhunaipan 已提交
301 302 303 304 305
def test_tensor_input_list_string():
    with pytest.raises(TypeError):
        input_data = [[2, 3, '4', 5], [1, 2, 3, 4]]
        ms.Tensor(input_data)

J
jinyaohui 已提交
306

Z
zhunaipan 已提交
307 308 309 310 311
def test_tensor_input_none():
    with pytest.raises(TypeError):
        input_data = None
        ms.Tensor(input_data, np.int64)

J
jinyaohui 已提交
312

Z
zhunaipan 已提交
313 314 315 316 317
# pylint: disable=no-value-for-parameter
def test_tensor_input_empty():
    with pytest.raises(TypeError):
        ms.Tensor()

J
jinyaohui 已提交
318

Z
zhunaipan 已提交
319 320 321 322 323
def test_tensor_input_ndarray_str():
    with pytest.raises(TypeError):
        inp = np.array(["88", 2, 4])
        ms.Tensor(inp)

J
jinyaohui 已提交
324

Z
zhunaipan 已提交
325 326 327 328 329 330 331
def test_tensor_input_ndarray_bool():
    inp = np.array([True, 2, 4])
    ms.Tensor(inp)

    inp = np.array([False, 2, 4])
    ms.Tensor(inp)

J
jinyaohui 已提交
332

Z
zhunaipan 已提交
333 334 335 336 337
def test_tensor_input_ndarray_complex():
    with pytest.raises(TypeError):
        inp = np.array([20j, 2, 4])
        ms.Tensor(inp)

J
jinyaohui 已提交
338

Z
zhunaipan 已提交
339 340 341 342 343
def test_tensor_input_ndarray_none():
    with pytest.raises(TypeError):
        inp = np.array([None, 2, 4])
        ms.Tensor(inp)

J
jinyaohui 已提交
344

Z
zhunaipan 已提交
345 346 347 348 349
def test_tensor_input_ndarray_dict():
    with pytest.raises(TypeError):
        inp = {'a': 6, 'b': 7}
        ms.Tensor(inp)

J
jinyaohui 已提交
350

Z
zhunaipan 已提交
351 352 353 354 355
def test_tensor_input_np_nan():
    with pytest.raises(TypeError):
        input_data = (1, 2, 3, np.nan)
        ms.Tensor(input_data, np.int64)

J
jinyaohui 已提交
356

Z
zhunaipan 已提交
357 358 359 360 361
def test_tensor_input_tuple_inf():
    with pytest.raises(TypeError):
        input_data = (1, 2, 3, float("inf"))
        ms.Tensor(input_data, np.int64)

J
jinyaohui 已提交
362

Z
zhunaipan 已提交
363 364 365 366 367
def test_tensor_input_dict():
    with pytest.raises(TypeError):
        input_data = {'a': 6, 'b': 7}
        ms.Tensor(input_data, np.int64)

J
jinyaohui 已提交
368

Z
zhunaipan 已提交
369 370 371 372 373
def test_tensor_input_complex():
    with pytest.raises(TypeError):
        input_data = (1, 2j, 3)
        ms.Tensor(input_data, np.int64)

J
jinyaohui 已提交
374

Z
zhunaipan 已提交
375 376 377 378 379
def test_tensor_dtype_np_float():
    with pytest.raises(TypeError):
        input_data = np.random.randn(32, 112, 112, 3).astype(np.float)
        ms.Tensor(input_data, np.float)

J
jinyaohui 已提交
380

Z
zhunaipan 已提交
381 382 383 384 385
def test_tensor_dtype_np_float16():
    with pytest.raises(TypeError):
        input_data = np.random.randn(32, 112, 112, 3).astype(np.float16)
        ms.Tensor(input_data, np.float16)

J
jinyaohui 已提交
386

Z
zhunaipan 已提交
387 388 389 390 391
def test_tensor_dtype_np_float32():
    with pytest.raises(TypeError):
        input_data = np.random.randn(32, 112, 112, 3).astype(np.float32)
        ms.Tensor(input_data, np.float32)

J
jinyaohui 已提交
392

Z
zhunaipan 已提交
393 394 395 396 397
def test_tensor_dtype_np_float64():
    with pytest.raises(TypeError):
        input_data = np.random.randn(32, 112, 112, 3).astype(np.float64)
        ms.Tensor(input_data, np.float64)

J
jinyaohui 已提交
398

Z
zhunaipan 已提交
399 400 401 402 403
def test_tensor_dtype_np_int():
    with pytest.raises(TypeError):
        input_data = np.random.randn(32, 112, 112, 3).astype(np.int)
        ms.Tensor(input_data, np.int)

J
jinyaohui 已提交
404

Z
zhunaipan 已提交
405 406 407 408 409
def test_tensor_dtype_np_int8():
    with pytest.raises(TypeError):
        input_data = np.random.randn(32, 112, 112, 3).astype(np.int8)
        ms.Tensor(input_data, np.int8)

J
jinyaohui 已提交
410

Z
zhunaipan 已提交
411 412 413 414 415
def test_tensor_dtype_np_int16():
    with pytest.raises(TypeError):
        input_data = np.random.randn(32, 112, 112, 3).astype(np.int16)
        ms.Tensor(input_data, np.int16)

J
jinyaohui 已提交
416

Z
zhunaipan 已提交
417 418 419 420 421
def test_tensor_dtype_np_int32():
    with pytest.raises(TypeError):
        input_data = np.random.randn(32, 112, 112, 3).astype(np.int32)
        ms.Tensor(input_data, np.int32)

J
jinyaohui 已提交
422

Z
zhunaipan 已提交
423 424 425 426 427
def test_tensor_dtype_np_int64():
    with pytest.raises(TypeError):
        input_data = np.random.randn(32, 112, 112, 3).astype(np.int64)
        ms.Tensor(input_data, np.int64)

J
jinyaohui 已提交
428

Z
zhunaipan 已提交
429 430 431 432 433
def test_tensor_dtype_fp32_to_bool():
    with pytest.raises(RuntimeError):
        input = np.random.randn(2, 3, 4, 5).astype(np.float32)
        input = ms.Tensor(input)
        input_me = ms.Tensor(input, dtype=ms.bool_)
W
Wei Luning 已提交
434

K
kingfo 已提交
435 436

def test_tensor_operation():
J
jinyaohui 已提交
437
    x = Tensor(np.ones((3, 3)) * 4)
K
kingfo 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
    res = x + 1
    assert np.all(res.asnumpy() == np.ones((3, 3)) * 5)
    res = 1 + x
    assert np.all(res.asnumpy() == np.ones((3, 3)) * 5)
    res = x - 2
    assert np.all(res.asnumpy() == np.ones((3, 3)) * 2)
    res = 6 - x
    assert np.all(res.asnumpy() == np.ones((3, 3)) * 2)
    res = x * 3
    assert np.all(res.asnumpy() == np.ones((3, 3)) * 12)
    res = 3 * x
    assert np.all(res.asnumpy() == np.ones((3, 3)) * 12)
    res = x / 2
    assert np.all(res.asnumpy() == np.ones((3, 3)) * 2)
    res = 8 / x
    assert np.all(res.asnumpy() == np.ones((3, 3)) * 2)
    with pytest.raises(TypeError):
        res = x * (2, 3)