# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ @File : test_tensor.py @Author: @Date : 2019-03-14 @Desc : test mindspore tensor's operation """ import numpy as np import pytest import mindspore as ms import mindspore.common.api as me import mindspore.nn as nn from mindspore import Tensor from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter from ..ut_filter import non_graph_engine ndarr = np.ones((2, 3)) def test_tensor_flatten(): with pytest.raises(AttributeError): lst = [1, 2, 3, 4, ] tensor_list = ms.Tensor(lst, ms.float32) tensor_list = tensor_list.Flatten() print(tensor_list) def test_tensor_list(): lst = [[1.0, 2.0, 1.0], [1.0, 10.0, 9.0]] tensor_list = ms.Tensor(lst, ms.float32) print(tensor_list) def test_tensor(): """test_tensor""" t1 = ms.Tensor(ndarr) assert isinstance(t1, ms.Tensor) assert t1.dtype() == ms.float64 t2 = ms.Tensor(np.zeros([1, 2, 3]), ms.float32) assert isinstance(t2, ms.Tensor) assert t2.shape() == (1, 2, 3) assert t2.dtype() == ms.float32 t3 = ms.Tensor(0.1) assert isinstance(t3, ms.Tensor) assert t3.dtype() == ms.float64 t4 = ms.Tensor(1) assert isinstance(t4, ms.Tensor) assert t4.dtype() == ms.int64 def test_tensor_type_float16(): t_float16 = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float16)) assert isinstance(t_float16, ms.Tensor) assert t_float16.shape() == (2, 3) assert t_float16.dtype() == ms.float16 def test_tensor_type_float32(): t_float32 = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32)) assert isinstance(t_float32, ms.Tensor) assert t_float32.shape() == (2, 3) assert t_float32.dtype() == ms.float32 def test_tensor_type_float32_user_define(): t = ms.Tensor(np.zeros([1, 2, 3]), ms.float32) assert isinstance(t, ms.Tensor) assert t.shape() == (1, 2, 3) assert t.dtype() == ms.float32 def test_tensor_type_float64(): t = ms.Tensor([[1.0, 2, 3], [4, 5, 6]]) assert isinstance(t, ms.Tensor) assert t.shape() == (2, 3) assert t.dtype() == ms.float64 t_zero = ms.Tensor(np.zeros([1, 2, 3])) assert isinstance(t_zero, ms.Tensor) assert t_zero.shape() == (1, 2, 3) assert t_zero.dtype() == ms.float64 def test_tensor_type_float64_user_define(): t = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=float)) assert isinstance(t, ms.Tensor) assert t.shape() == (2, 3) assert t.dtype() == ms.float64 t_float64 = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]]), ms.float64) assert isinstance(t_float64, ms.Tensor) assert t_float64.shape() == (2, 3) assert t_float64.dtype() == ms.float64 def test_tensor_type_bool(): # init a tensor with bool type ts_bool_array = ms.Tensor(np.zeros([2, 3], np.bool), ms.bool_) assert isinstance(ts_bool_array, ms.Tensor) assert ts_bool_array.dtype() == ms.bool_ t_bool = ms.Tensor(True) assert isinstance(t_bool, ms.Tensor) assert t_bool.dtype() == ms.bool_ t_bool_array = ms.Tensor(np.array([[True, False, True], [False, False, False]])) assert isinstance(t_bool_array, ms.Tensor) assert t_bool_array.shape() == (2, 3) assert t_bool_array.dtype() == ms.bool_ def test_tensor_type_int8(): t_int8_array = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int8)) assert isinstance(t_int8_array, ms.Tensor) assert t_int8_array.shape() == (2, 3) assert t_int8_array.dtype() == ms.int8 def test_tensor_type_int16(): t_int16_array = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int16)) assert isinstance(t_int16_array, ms.Tensor) assert t_int16_array.shape() == (2, 3) assert t_int16_array.dtype() == ms.int16 def test_tensor_type_int32(): t_int = ms.Tensor([[1, 2, 3], [4, 5, 6]]) assert isinstance(t_int, ms.Tensor) assert t_int.shape() == (2, 3) assert t_int.dtype() == ms.int64 t_int_array = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32)) assert isinstance(t_int_array, ms.Tensor) assert t_int_array.shape() == (2, 3) assert t_int_array.dtype() == ms.int32 def test_tensor_type_int64(): t_int64 = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int64)) assert isinstance(t_int64, ms.Tensor) assert t_int64.shape() == (2, 3) assert t_int64.dtype() == ms.int64 def test_tensor_type_uint8(): t_uint8_array = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint8)) assert isinstance(t_uint8_array, ms.Tensor) assert t_uint8_array.shape() == (2, 3) assert t_uint8_array.dtype() == ms.uint8 def test_tensor_type_uint16(): t_uint16_array = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint16)) assert isinstance(t_uint16_array, ms.Tensor) assert t_uint16_array.shape() == (2, 3) assert t_uint16_array.dtype() == ms.uint16 def test_tensor_type_uint32(): t_uint32_array = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint32)) assert isinstance(t_uint32_array, ms.Tensor) assert t_uint32_array.shape() == (2, 3) assert t_uint32_array.dtype() == ms.uint32 def test_tensor_type_uint64(): t_uint64 = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint64)) assert isinstance(t_uint64, ms.Tensor) assert t_uint64.shape() == (2, 3) assert t_uint64.dtype() == ms.uint64 def test_set_type(): t = ms.Tensor(ndarr) t.set_dtype(ms.float32) assert t.dtype() == ms.float32 @non_graph_engine def test_add(): x = ms.Tensor(ndarr) y = ms.Tensor(ndarr) z = x + y assert isinstance(z, ms.Tensor) @non_graph_engine def test_sub(): x = ms.Tensor(ndarr) y = ms.Tensor(ndarr) z = x - y assert isinstance(z, ms.Tensor) @non_graph_engine def test_div(): x = ms.Tensor(np.array([[2, 6, 10], [12, 4, 8]]).astype(np.float32)) y = ms.Tensor(np.array([[2, 2, 5], [6, 1, 2]]).astype(np.float32)) z = x / y z2 = x / 2 assert isinstance(z, ms.Tensor) assert isinstance(z2, ms.Tensor) @non_graph_engine def test_parameter(): x = Parameter(initializer(1, [1], ms.float32), name="beta1_power") z = x / 2 print(z) class Net(nn.Cell): """Net definition""" def __init__(self, dim): super(Net, self).__init__() self.dim = dim def construct(self, input_x): return input_x @non_graph_engine def test_return_tensor(): """test_return_tensor""" net = Net(0) input_data = ms.Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')) input_data.set_dtype(ms.float32) exe = me._executor exe.compile(net, input_data) tensor_ = exe(net, input_data) # get shape shape_ = tensor_.shape() print("shape = ", shape_) # get type type_ = tensor_.dtype() print("type = ", type_) # get value value_ = tensor_.asnumpy() print("numpy value = ", value_) def test_tensor_contiguous(): """test_tensor_contiguous""" input_c = np.arange(6).reshape(2, 3) input_f = input_c.T np.ascontiguousarray(input_c, dtype=np.float32) assert True, input_c.flags['C_CONTIGUOUS'] print("input_f flags = ", input_f.flags) assert True, input_f.flags['F_CONTIGUOUS'] tensor_f_float32 = ms.Tensor(input_f) rt_f = tensor_f_float32.asnumpy() assert True, rt_f.flags['C_CONTIGUOUS'] print("rt_f flags = ", rt_f.flags) def test_tensor_contiguous2(): input_data = np.random.randn(32, 112, 112, 3).astype(np.float32) input_me = input_data.transpose(0, 3, 1, 2) print("input_me flags = ", input_me.flags) tensor_f_float32 = ms.Tensor(input_me) out_f = tensor_f_float32.asnumpy() print("out_f flags = ", out_f.flags) def test_tensor_input_string(): with pytest.raises(TypeError): input_data = 'ccc' ms.Tensor(input_data) def test_tensor_input_tuple_string(): with pytest.raises(TypeError): input_data = (2, 3, '4', 5) ms.Tensor(input_data) def test_tensor_input_list_string(): with pytest.raises(TypeError): input_data = [[2, 3, '4', 5], [1, 2, 3, 4]] ms.Tensor(input_data) def test_tensor_input_none(): with pytest.raises(TypeError): input_data = None ms.Tensor(input_data, np.int64) # pylint: disable=no-value-for-parameter def test_tensor_input_empty(): with pytest.raises(TypeError): ms.Tensor() def test_tensor_input_ndarray_str(): with pytest.raises(TypeError): inp = np.array(["88", 2, 4]) ms.Tensor(inp) def test_tensor_input_ndarray_bool(): inp = np.array([True, 2, 4]) ms.Tensor(inp) inp = np.array([False, 2, 4]) ms.Tensor(inp) def test_tensor_input_ndarray_complex(): with pytest.raises(TypeError): inp = np.array([20j, 2, 4]) ms.Tensor(inp) def test_tensor_input_ndarray_none(): with pytest.raises(TypeError): inp = np.array([None, 2, 4]) ms.Tensor(inp) def test_tensor_input_ndarray_dict(): with pytest.raises(TypeError): inp = {'a': 6, 'b': 7} ms.Tensor(inp) def test_tensor_input_np_nan(): with pytest.raises(TypeError): input_data = (1, 2, 3, np.nan) ms.Tensor(input_data, np.int64) def test_tensor_input_tuple_inf(): with pytest.raises(TypeError): input_data = (1, 2, 3, float("inf")) ms.Tensor(input_data, np.int64) def test_tensor_input_dict(): with pytest.raises(TypeError): input_data = {'a': 6, 'b': 7} ms.Tensor(input_data, np.int64) def test_tensor_input_complex(): with pytest.raises(TypeError): input_data = (1, 2j, 3) ms.Tensor(input_data, np.int64) def test_tensor_dtype_np_float(): with pytest.raises(TypeError): input_data = np.random.randn(32, 112, 112, 3).astype(np.float) ms.Tensor(input_data, np.float) def test_tensor_dtype_np_float16(): with pytest.raises(TypeError): input_data = np.random.randn(32, 112, 112, 3).astype(np.float16) ms.Tensor(input_data, np.float16) def test_tensor_dtype_np_float32(): with pytest.raises(TypeError): input_data = np.random.randn(32, 112, 112, 3).astype(np.float32) ms.Tensor(input_data, np.float32) def test_tensor_dtype_np_float64(): with pytest.raises(TypeError): input_data = np.random.randn(32, 112, 112, 3).astype(np.float64) ms.Tensor(input_data, np.float64) def test_tensor_dtype_np_int(): with pytest.raises(TypeError): input_data = np.random.randn(32, 112, 112, 3).astype(np.int) ms.Tensor(input_data, np.int) def test_tensor_dtype_np_int8(): with pytest.raises(TypeError): input_data = np.random.randn(32, 112, 112, 3).astype(np.int8) ms.Tensor(input_data, np.int8) def test_tensor_dtype_np_int16(): with pytest.raises(TypeError): input_data = np.random.randn(32, 112, 112, 3).astype(np.int16) ms.Tensor(input_data, np.int16) def test_tensor_dtype_np_int32(): with pytest.raises(TypeError): input_data = np.random.randn(32, 112, 112, 3).astype(np.int32) ms.Tensor(input_data, np.int32) def test_tensor_dtype_np_int64(): with pytest.raises(TypeError): input_data = np.random.randn(32, 112, 112, 3).astype(np.int64) ms.Tensor(input_data, np.int64) def test_tensor_dtype_fp32_to_bool(): with pytest.raises(RuntimeError): input = np.random.randn(2, 3, 4, 5).astype(np.float32) input = ms.Tensor(input) input_me = ms.Tensor(input, dtype=ms.bool_) def test_tensor_operation(): x = Tensor(np.ones((3, 3)) * 4) res = x + 1 assert np.all(res.asnumpy() == np.ones((3, 3)) * 5) res = 1 + x assert np.all(res.asnumpy() == np.ones((3, 3)) * 5) res = x - 2 assert np.all(res.asnumpy() == np.ones((3, 3)) * 2) res = 6 - x assert np.all(res.asnumpy() == np.ones((3, 3)) * 2) res = x * 3 assert np.all(res.asnumpy() == np.ones((3, 3)) * 12) res = 3 * x assert np.all(res.asnumpy() == np.ones((3, 3)) * 12) res = x / 2 assert np.all(res.asnumpy() == np.ones((3, 3)) * 2) res = 8 / x assert np.all(res.asnumpy() == np.ones((3, 3)) * 2) with pytest.raises(TypeError): res = x * (2, 3)