test_pad.py 4.2 KB
Newer Older
Z
zhunaipan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing Pad op in DE
"""
import matplotlib.pyplot as plt
import mindspore.dataset.transforms.vision.c_transforms as c_vision
import numpy as np

import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.py_transforms as py_vision
from mindspore import log as logger
E
eric 已提交
25
from util import diff_mse
Z
zhunaipan 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"

def test_pad_op():
    """
    Test Pad op
    """
    logger.info("test_random_color_jitter_op")

    # First dataset
    data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
    decode_op = c_vision.Decode()

    pad_op = c_vision.Pad((100, 100, 100, 100))
    ctrans = [decode_op,
              pad_op,
              ]

    data1 = data1.map(input_columns=["image"], operations=ctrans)

    # Second dataset
    transforms = [
        py_vision.Decode(),
        py_vision.Pad(100),
        py_vision.ToTensor(),
    ]
    transform = py_vision.ComposeOp(transforms)
    data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
    data2 = data2.map(input_columns=["image"], operations=transform())

    for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
        c_image = item1["image"]
        py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)

        logger.info("shape of c_image: {}".format(c_image.shape))
        logger.info("shape of py_image: {}".format(py_image.shape))

        logger.info("dtype of c_image: {}".format(c_image.dtype))
        logger.info("dtype of py_image: {}".format(py_image.dtype))

        mse = diff_mse(c_image, py_image)
        logger.info("mse is {}".format(mse))
        assert mse < 0.01


E
eric 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
def test_pad_grayscale(): 
    """
    Tests that the pad works for grayscale images 
    """
    def channel_swap(image): 
        """
        Py func hack for our pytransforms to work with c transforms
        """
        return (image.transpose(1, 2, 0) * 255).astype(np.uint8)

    transforms = [
        py_vision.Decode(),
        py_vision.Grayscale(1), 
        py_vision.ToTensor(),
        (lambda image: channel_swap(image))
    ]

    transform = py_vision.ComposeOp(transforms)
    data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
    data1 = data1.map(input_columns=["image"], operations=transform())

    # if input is grayscale, the output dimensions should be single channel 
    pad_gray = c_vision.Pad(100, fill_value=(20, 20, 20))
    data1 = data1.map(input_columns=["image"], operations=pad_gray)
    dataset_shape_1 = []
    for item1 in data1.create_dict_iterator():
        c_image = item1["image"]
        dataset_shape_1.append(c_image.shape)

    # Dataset for comparison 
    data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
    decode_op = c_vision.Decode()

    # we use the same padding logic 
    ctrans = [decode_op, pad_gray]
    dataset_shape_2 = []

    data2 = data2.map(input_columns=["image"], operations=ctrans)

    for item2 in data2.create_dict_iterator():
        c_image = item2["image"]
        dataset_shape_2.append(c_image.shape)

    for shape1, shape2 in zip(dataset_shape_1, dataset_shape_2):
        # validate that the first two dimensions are the same
        # we have a little inconsistency here because the third dimension is 1 after py_vision.Grayscale
        assert (shape1[0:1] == shape2[0:1])


Z
zhunaipan 已提交
121 122
if __name__ == "__main__":
    test_pad_op()
E
eric 已提交
123
    test_pad_grayscale()