test_pad.py 3.0 KB
Newer Older
Z
zhunaipan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing Pad op in DE
"""
import matplotlib.pyplot as plt
import mindspore.dataset.transforms.vision.c_transforms as c_vision
import numpy as np

import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.py_transforms as py_vision
from mindspore import log as logger

DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"


def visualize(first, mse, second):
    """
    visualizes the image using DE op and enCV
    """
    plt.subplot(141)
    plt.imshow(first)
    plt.title("c transformed image")

    plt.subplot(142)
    plt.imshow(second)
    plt.title("py random_color_jitter image")

    plt.subplot(143)
    plt.imshow(first - second)
    plt.title("Difference image, mse : {}".format(mse))
    plt.show()


def diff_mse(in1, in2):
    mse = (np.square(in1.astype(float) / 255 - in2.astype(float) / 255)).mean()
    return mse * 100


def test_pad_op():
    """
    Test Pad op
    """
    logger.info("test_random_color_jitter_op")

    # First dataset
    data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
    decode_op = c_vision.Decode()

    pad_op = c_vision.Pad((100, 100, 100, 100))
    ctrans = [decode_op,
              pad_op,
              ]

    data1 = data1.map(input_columns=["image"], operations=ctrans)

    # Second dataset
    transforms = [
        py_vision.Decode(),
        py_vision.Pad(100),
        py_vision.ToTensor(),
    ]
    transform = py_vision.ComposeOp(transforms)
    data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
    data2 = data2.map(input_columns=["image"], operations=transform())

    num_iter = 0
    for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
        num_iter += 1
        c_image = item1["image"]
        py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)

        logger.info("shape of c_image: {}".format(c_image.shape))
        logger.info("shape of py_image: {}".format(py_image.shape))

        logger.info("dtype of c_image: {}".format(c_image.dtype))
        logger.info("dtype of py_image: {}".format(py_image.dtype))

        diff = c_image - py_image
        mse = diff_mse(c_image, py_image)
        logger.info("mse is {}".format(mse))
        assert mse < 0.01


if __name__ == "__main__":
    test_pad_op()