- 01 12月, 2016 1 次提交
-
-
由 xuwei06 提交于
When the define_py_data_sources2 has both train_list and test_list, for job=test, the trainer will create both dataProvider_ and testDataProvider_. But dataProvider_ is not used. This causes SIGSEGV at finishAsync() because asyncLoader_ is not created. Change-Id: If579f715f80a70ebc795094792c3436bfa0f5746
-
- 28 11月, 2016 1 次提交
-
-
由 wangyanfei01 提交于
* always do test on all test data * do test at the end of each pass if test_period=0, otherwise do test if test_period batches passed
-
- 22 11月, 2016 1 次提交
-
-
由 Luo Tao 提交于
-
- 17 11月, 2016 1 次提交
-
-
由 Luo Tao 提交于
-
- 13 11月, 2016 1 次提交
-
-
由 Yu Yang 提交于
* Check all files by pre commit hooks
-
- 12 11月, 2016 1 次提交
-
-
由 qijun 提交于
-
- 09 11月, 2016 4 次提交
-
-
由 wangyanfei01 提交于
-
由 wangyanfei01 提交于
-
由 wangyanfei01 提交于
-
由 wangyanfei01 提交于
-
- 03 11月, 2016 1 次提交
-
- 02 11月, 2016 1 次提交
-
-
由 qingqing01 提交于
* Add benchmark for PaddlePaddle, tensorflow and caffe * ConvProjection to reduce memory for goolenet * Add unit test for ConvProjection. 1. unit test in test_LayerGrad. 2. compare the ConvPorjection and CudnnConvLayer, also compare the concat_layer+img_conv_layer and concat_layer_conv_projection. * Reduce cudnn_conv memory and add benchmark document. 1. Use TmpMatrix as the workspace in cudnn_conv to reduce gpu memory. It reduce lots of memory. 2. Add benchmark document. 3. fix smallnet_mnist_cifar.py in paddle. * Add job=time and refine cudnn_conv to reduce gpu memroy and speed up * Refine cudnn_conv and shared biases operation in concat_layer and mixed_layer. * follow comments * follow comments * Use unique_ptr to prevent memory leaks in CudnnConvLayer.
-
- 28 10月, 2016 2 次提交
- 27 10月, 2016 1 次提交
-
-
由 emailweixu 提交于
* Python trainer API and demo * Adding missing PaddleAPIPrivate.h * Adding api_train.sh * More comments * Bump up patch version to 0b3
-
- 24 10月, 2016 1 次提交
-
-
由 luotao1 提交于
-
- 17 10月, 2016 1 次提交
-
-
由 emailweixu 提交于
* Fix sparse training for trainer_count=1 For trainer_count=1, the gradient machine is NeuralNetwork, which does not create parameter buf for PARAMETER_GRADIENT for sparse update in Parameter::enableType. But gradient parameter buf is still used in SgdThreadUpdater. * Minor update to comment
-
- 13 10月, 2016 1 次提交
-
-
由 luotao1 提交于
* add interface and unittest for nce layer * follow comments
-
- 10 10月, 2016 1 次提交
-
-
由 gangliao 提交于
* Use C++ 11 atomic_flag in MacOS as spin lock * Add unittest for it.
-
- 29 9月, 2016 3 次提交
- 28 9月, 2016 1 次提交
-
-
由 liaogang 提交于
* reduce trainer count for unit test on MAC OSX
-
- 27 9月, 2016 1 次提交
-
-
由 luotao1 提交于
* Add `device` parameter to ExtraAttr in trainer_config_helpers. * add unittest for it.
-
- 24 9月, 2016 1 次提交
-
-
由 Zrachel 提交于
Local training with "sparse_update = True" parameter triggers kSgdSparseCpuTraining mode, fix bugs under it.
-
- 20 9月, 2016 3 次提交
-
-
由 Yu Yang 提交于
* remove unnecessary field set in ParameterConfig, Evaluators, etc
-
由 Luo Tao 提交于
-
由 Yu Yang 提交于
* min_pool_size would be infinite by default. * add unittest for min_pool_size * Fix bug in can_over_batch_size * add unittest for can_over_batch_size * Add DEFINE_PROVIDER_EX * Add default value of should_shuffle * When training, the default value of should_shuffle is True. * When testing, the default value of should_shuffle is False. * User a set a provider should_shuffle or not by pass it to `@provider` * should_shuffle can handle a list of value, not just boolean * Add input order mapping by using name * Add unittest * Add check to check input format. * Default is close for speed reason. * User could stop train when check error, or continue train without this train sample. * use deque instead of vector in generators pool, make erase generator faster. * Add chinese/english documentation * Make should shuffle = false in unittest * Add python files to depends.
-
- 12 9月, 2016 1 次提交
-
-
由 liaogang 提交于
-
- 09 9月, 2016 1 次提交
-
-
由 liaogang 提交于
-
- 08 9月, 2016 2 次提交
- 31 8月, 2016 1 次提交
-
-
由 hedaoyuan 提交于
ISSUE=4602845 git-svn-id: https://svn.baidu.com/idl/trunk/paddle@1448 1ad973e4-5ce8-4261-8a94-b56d1f490c56
-
- 30 8月, 2016 2 次提交
-
-
由 wangyanfei01 提交于
git-svn-id: https://svn.baidu.com/idl/trunk/paddle@1411 1ad973e4-5ce8-4261-8a94-b56d1f490c56
-
由 dangqingqing 提交于
ISSUE=4586769 git-svn-id: https://svn.baidu.com/idl/trunk/paddle@1409 1ad973e4-5ce8-4261-8a94-b56d1f490c56
-
- 29 8月, 2016 1 次提交
-
-
由 zhangjinchao01 提交于
ISSUE=4586495 git-svn-id: https://svn.baidu.com/idl/trunk/paddle@1408 1ad973e4-5ce8-4261-8a94-b56d1f490c56
-