未验证 提交 c2942144 编写于 作者: H HongyuJia 提交者: GitHub

[phi] Migrate truncated_gaussian_random XPU kernel to PHI (#45529)

* migrate truncated_gaussian_random kernel to phi, test=kunlun

* reuse CPU kernel, test=kunlun

* debug kernel, test=kunlun

* migrate truncated_gaussian_random kernel to phi, test=kunlun

* split truncated_normal, test=kunlun

* try fix error from CI, test=kunlun
上级 68bfa0cd
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include <limits>
#include <random>
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/truncated_gaussian_random_op.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class XPUTruncatedGaussianRandomKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
float mean = context.Attr<float>("mean");
float std = context.Attr<float>("std");
auto* tensor = context.Output<framework::Tensor>("Out");
T* data = tensor->mutable_data<T>(context.GetPlace());
std::uniform_real_distribution<T> dist(std::numeric_limits<float>::min(),
1.0);
TruncatedNormal<T> truncated_normal(mean, std);
int64_t size = tensor->numel();
unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
// TODO(pangyoki): implement GetXPURandomEngine to set different seeds on
// corresponding XPU device.
auto engine = framework::GetCPURandomEngine(seed);
std::unique_ptr<T[]> data_cpu(new T[size]);
for (int64_t i = 0; i < size; ++i) {
data_cpu[i] = truncated_normal(dist(*engine));
}
memory::Copy(context.GetPlace(),
data,
platform::CPUPlace(),
reinterpret_cast<void*>(data_cpu.get()),
size * sizeof(T));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
truncated_gaussian_random,
ops::XPUTruncatedGaussianRandomKernel<paddle::platform::XPUDeviceContext,
float>);
#endif // PADDLE_WITH_XPU
......@@ -20,142 +20,10 @@
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/truncated_normal.h"
namespace phi {
// reference: https://gist.github.com/lakshayg/d80172fe5ae3c5d2c2aedb53c250320e
template <typename T>
T Erfinv(T x) {
if (x < -1 || x > 1) {
return std::numeric_limits<T>::quiet_NaN();
} else if (x == 1.0) {
return std::numeric_limits<T>::infinity();
} else if (x == -1.0) {
return -std::numeric_limits<T>::infinity();
}
const T LN2 = 6.931471805599453094172321214581e-1;
const T A0 = 1.1975323115670912564578e0;
const T A1 = 4.7072688112383978012285e1;
const T A2 = 6.9706266534389598238465e2;
const T A3 = 4.8548868893843886794648e3;
const T A4 = 1.6235862515167575384252e4;
const T A5 = 2.3782041382114385731252e4;
const T A6 = 1.1819493347062294404278e4;
const T A7 = 8.8709406962545514830200e2;
const T B0 = 1.0000000000000000000e0;
const T B1 = 4.2313330701600911252e1;
const T B2 = 6.8718700749205790830e2;
const T B3 = 5.3941960214247511077e3;
const T B4 = 2.1213794301586595867e4;
const T B5 = 3.9307895800092710610e4;
const T B6 = 2.8729085735721942674e4;
const T B7 = 5.2264952788528545610e3;
const T C0 = 1.42343711074968357734e0;
const T C1 = 4.63033784615654529590e0;
const T C2 = 5.76949722146069140550e0;
const T C3 = 3.64784832476320460504e0;
const T C4 = 1.27045825245236838258e0;
const T C5 = 2.41780725177450611770e-1;
const T C6 = 2.27238449892691845833e-2;
const T C7 = 7.74545014278341407640e-4;
const T D0 = 1.4142135623730950488016887e0;
const T D1 = 2.9036514445419946173133295e0;
const T D2 = 2.3707661626024532365971225e0;
const T D3 = 9.7547832001787427186894837e-1;
const T D4 = 2.0945065210512749128288442e-1;
const T D5 = 2.1494160384252876777097297e-2;
const T D6 = 7.7441459065157709165577218e-4;
const T D7 = 1.4859850019840355905497876e-9;
const T E0 = 6.65790464350110377720e0;
const T E1 = 5.46378491116411436990e0;
const T E2 = 1.78482653991729133580e0;
const T E3 = 2.96560571828504891230e-1;
const T E4 = 2.65321895265761230930e-2;
const T E5 = 1.24266094738807843860e-3;
const T E6 = 2.71155556874348757815e-5;
const T E7 = 2.01033439929228813265e-7;
const T F0 = 1.414213562373095048801689e0;
const T F1 = 8.482908416595164588112026e-1;
const T F2 = 1.936480946950659106176712e-1;
const T F3 = 2.103693768272068968719679e-2;
const T F4 = 1.112800997078859844711555e-3;
const T F5 = 2.611088405080593625138020e-5;
const T F6 = 2.010321207683943062279931e-7;
const T F7 = 2.891024605872965461538222e-15;
T abs_x = abs(x);
if (abs_x <= 0.85) {
T r = 0.180625 - 0.25 * x * x;
T num =
(((((((A7 * r + A6) * r + A5) * r + A4) * r + A3) * r + A2) * r + A1) *
r +
A0);
T den =
(((((((B7 * r + B6) * r + B5) * r + B4) * r + B3) * r + B2) * r + B1) *
r +
B0);
return x * num / den;
}
T r = sqrt(LN2 - log(1.0 - abs_x));
T num, den;
if (r <= 5.0) {
r = r - 1.6;
num =
(((((((C7 * r + C6) * r + C5) * r + C4) * r + C3) * r + C2) * r + C1) *
r +
C0);
den =
(((((((D7 * r + D6) * r + D5) * r + D4) * r + D3) * r + D2) * r + D1) *
r +
D0);
} else {
r = r - 5.0;
num =
(((((((E7 * r + E6) * r + E5) * r + E4) * r + E3) * r + E2) * r + E1) *
r +
E0);
den =
(((((((F7 * r + F6) * r + F5) * r + F4) * r + F3) * r + F2) * r + F1) *
r +
F0);
}
if (x < 0) {
return -num / den;
} else {
return num / den;
}
}
template <typename T>
struct TruncatedNormal {
T mean, std;
T a_normal_cdf;
T b_normal_cdf;
TruncatedNormal(T mean, T std) : mean(mean), std(std) {
auto normal_cdf = [](T x) {
return (1.0 + std::erf(x / std::sqrt(2.0))) / 2.0;
};
a_normal_cdf = normal_cdf(-2.0);
b_normal_cdf = normal_cdf(2.0);
}
T operator()(T value) const {
auto p = a_normal_cdf + (b_normal_cdf - a_normal_cdf) * value;
return std::sqrt(2.0) * Erfinv(2 * p - 1) * std + mean;
}
};
template <typename T, typename Context>
void TruncatedGaussianRandomKernel(const Context& dev_ctx,
const std::vector<int>& shape,
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
// reference: https://gist.github.com/lakshayg/d80172fe5ae3c5d2c2aedb53c250320e
template <typename T>
T Erfinv(T x) {
if (x < -1 || x > 1) {
return std::numeric_limits<T>::quiet_NaN();
} else if (x == 1.0) {
return std::numeric_limits<T>::infinity();
} else if (x == -1.0) {
return -std::numeric_limits<T>::infinity();
}
const T LN2 = 6.931471805599453094172321214581e-1;
const T A0 = 1.1975323115670912564578e0;
const T A1 = 4.7072688112383978012285e1;
const T A2 = 6.9706266534389598238465e2;
const T A3 = 4.8548868893843886794648e3;
const T A4 = 1.6235862515167575384252e4;
const T A5 = 2.3782041382114385731252e4;
const T A6 = 1.1819493347062294404278e4;
const T A7 = 8.8709406962545514830200e2;
const T B0 = 1.0000000000000000000e0;
const T B1 = 4.2313330701600911252e1;
const T B2 = 6.8718700749205790830e2;
const T B3 = 5.3941960214247511077e3;
const T B4 = 2.1213794301586595867e4;
const T B5 = 3.9307895800092710610e4;
const T B6 = 2.8729085735721942674e4;
const T B7 = 5.2264952788528545610e3;
const T C0 = 1.42343711074968357734e0;
const T C1 = 4.63033784615654529590e0;
const T C2 = 5.76949722146069140550e0;
const T C3 = 3.64784832476320460504e0;
const T C4 = 1.27045825245236838258e0;
const T C5 = 2.41780725177450611770e-1;
const T C6 = 2.27238449892691845833e-2;
const T C7 = 7.74545014278341407640e-4;
const T D0 = 1.4142135623730950488016887e0;
const T D1 = 2.9036514445419946173133295e0;
const T D2 = 2.3707661626024532365971225e0;
const T D3 = 9.7547832001787427186894837e-1;
const T D4 = 2.0945065210512749128288442e-1;
const T D5 = 2.1494160384252876777097297e-2;
const T D6 = 7.7441459065157709165577218e-4;
const T D7 = 1.4859850019840355905497876e-9;
const T E0 = 6.65790464350110377720e0;
const T E1 = 5.46378491116411436990e0;
const T E2 = 1.78482653991729133580e0;
const T E3 = 2.96560571828504891230e-1;
const T E4 = 2.65321895265761230930e-2;
const T E5 = 1.24266094738807843860e-3;
const T E6 = 2.71155556874348757815e-5;
const T E7 = 2.01033439929228813265e-7;
const T F0 = 1.414213562373095048801689e0;
const T F1 = 8.482908416595164588112026e-1;
const T F2 = 1.936480946950659106176712e-1;
const T F3 = 2.103693768272068968719679e-2;
const T F4 = 1.112800997078859844711555e-3;
const T F5 = 2.611088405080593625138020e-5;
const T F6 = 2.010321207683943062279931e-7;
const T F7 = 2.891024605872965461538222e-15;
T abs_x = abs(x);
if (abs_x <= 0.85) {
T r = 0.180625 - 0.25 * x * x;
T num =
(((((((A7 * r + A6) * r + A5) * r + A4) * r + A3) * r + A2) * r + A1) *
r +
A0);
T den =
(((((((B7 * r + B6) * r + B5) * r + B4) * r + B3) * r + B2) * r + B1) *
r +
B0);
return x * num / den;
}
T r = sqrt(LN2 - log(1.0 - abs_x));
T num, den;
if (r <= 5.0) {
r = r - 1.6;
num =
(((((((C7 * r + C6) * r + C5) * r + C4) * r + C3) * r + C2) * r + C1) *
r +
C0);
den =
(((((((D7 * r + D6) * r + D5) * r + D4) * r + D3) * r + D2) * r + D1) *
r +
D0);
} else {
r = r - 5.0;
num =
(((((((E7 * r + E6) * r + E5) * r + E4) * r + E3) * r + E2) * r + E1) *
r +
E0);
den =
(((((((F7 * r + F6) * r + F5) * r + F4) * r + F3) * r + F2) * r + F1) *
r +
F0);
}
if (x < 0) {
return -num / den;
} else {
return num / den;
}
}
template <typename T>
struct TruncatedNormal {
T mean, std;
T a_normal_cdf;
T b_normal_cdf;
TruncatedNormal(T mean, T std) : mean(mean), std(std) {
auto normal_cdf = [](T x) {
return (1.0 + std::erf(x / std::sqrt(2.0))) / 2.0;
};
a_normal_cdf = normal_cdf(-2.0);
b_normal_cdf = normal_cdf(2.0);
}
T operator()(T value) const {
auto p = a_normal_cdf + (b_normal_cdf - a_normal_cdf) * value;
return std::sqrt(2.0) * Erfinv(2 * p - 1) * std + mean;
}
};
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/truncated_gaussian_random_kernel.h"
#include <limits>
#include <random>
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/truncated_normal.h"
namespace phi {
template <typename T, typename Context>
void TruncatedGaussianRandomKernel(const Context& dev_ctx,
const std::vector<int>& shape,
float mean,
float std,
int seed,
DataType dtype,
DenseTensor* out) {
T* data = dev_ctx.template Alloc<T>(out);
std::uniform_real_distribution<T> dist(std::numeric_limits<float>::min(),
1.0);
TruncatedNormal<T> truncated_normal(mean, std);
int64_t size = out->numel();
std::unique_ptr<T[]> data_cpu(new T[size]);
std::shared_ptr<std::mt19937_64> engine;
if (seed) {
engine = std::make_shared<std::mt19937_64>();
engine->seed(seed);
} else {
engine = dev_ctx.GetGenerator()->GetCPUEngine();
}
for (int64_t i = 0; i < size; ++i) {
data_cpu[i] = truncated_normal(dist(*engine));
}
paddle::memory::Copy(dev_ctx.GetPlace(),
data,
phi::CPUPlace(),
reinterpret_cast<void*>(data_cpu.get()),
size * sizeof(T));
}
} // namespace phi
PD_REGISTER_KERNEL(truncated_gaussian_random,
XPU,
ALL_LAYOUT,
phi::TruncatedGaussianRandomKernel,
float) {}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册