From c29421447e8dfe07fb58febce563523720bdf8a1 Mon Sep 17 00:00:00 2001 From: HongyuJia Date: Wed, 31 Aug 2022 16:49:27 +0800 Subject: [PATCH] [phi] Migrate truncated_gaussian_random XPU kernel to PHI (#45529) * migrate truncated_gaussian_random kernel to phi, test=kunlun * reuse CPU kernel, test=kunlun * debug kernel, test=kunlun * migrate truncated_gaussian_random kernel to phi, test=kunlun * split truncated_normal, test=kunlun * try fix error from CI, test=kunlun --- .../truncated_gaussian_random_op_xpu.cc | 69 -------- .../cpu/truncated_gaussian_random_kernel.cc | 134 +--------------- paddle/phi/kernels/funcs/truncated_normal.h | 148 ++++++++++++++++++ .../xpu/truncated_gaussian_random_kernel.cc | 69 ++++++++ 4 files changed, 218 insertions(+), 202 deletions(-) delete mode 100644 paddle/fluid/operators/truncated_gaussian_random_op_xpu.cc create mode 100644 paddle/phi/kernels/funcs/truncated_normal.h create mode 100644 paddle/phi/kernels/xpu/truncated_gaussian_random_kernel.cc diff --git a/paddle/fluid/operators/truncated_gaussian_random_op_xpu.cc b/paddle/fluid/operators/truncated_gaussian_random_op_xpu.cc deleted file mode 100644 index 5a448ca677e..00000000000 --- a/paddle/fluid/operators/truncated_gaussian_random_op_xpu.cc +++ /dev/null @@ -1,69 +0,0 @@ -/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#ifdef PADDLE_WITH_XPU - -#include -#include - -#include "paddle/fluid/framework/generator.h" -#include "paddle/fluid/framework/op_registry.h" -#include "paddle/fluid/operators/truncated_gaussian_random_op.h" - -namespace paddle { -namespace operators { - -template -class XPUTruncatedGaussianRandomKernel : public framework::OpKernel { - public: - void Compute(const framework::ExecutionContext& context) const override { - float mean = context.Attr("mean"); - float std = context.Attr("std"); - auto* tensor = context.Output("Out"); - T* data = tensor->mutable_data(context.GetPlace()); - - std::uniform_real_distribution dist(std::numeric_limits::min(), - 1.0); - TruncatedNormal truncated_normal(mean, std); - int64_t size = tensor->numel(); - - unsigned int seed = static_cast(context.Attr("seed")); - // TODO(pangyoki): implement GetXPURandomEngine to set different seeds on - // corresponding XPU device. - auto engine = framework::GetCPURandomEngine(seed); - - std::unique_ptr data_cpu(new T[size]); - - for (int64_t i = 0; i < size; ++i) { - data_cpu[i] = truncated_normal(dist(*engine)); - } - - memory::Copy(context.GetPlace(), - data, - platform::CPUPlace(), - reinterpret_cast(data_cpu.get()), - size * sizeof(T)); - } -}; - -} // namespace operators -} // namespace paddle - -namespace ops = paddle::operators; -REGISTER_OP_XPU_KERNEL( - truncated_gaussian_random, - ops::XPUTruncatedGaussianRandomKernel); - -#endif // PADDLE_WITH_XPU diff --git a/paddle/phi/kernels/cpu/truncated_gaussian_random_kernel.cc b/paddle/phi/kernels/cpu/truncated_gaussian_random_kernel.cc index 10280082619..53346d92e78 100644 --- a/paddle/phi/kernels/cpu/truncated_gaussian_random_kernel.cc +++ b/paddle/phi/kernels/cpu/truncated_gaussian_random_kernel.cc @@ -20,142 +20,10 @@ #include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/core/kernel_registry.h" +#include "paddle/phi/kernels/funcs/truncated_normal.h" namespace phi { -// reference: https://gist.github.com/lakshayg/d80172fe5ae3c5d2c2aedb53c250320e -template -T Erfinv(T x) { - if (x < -1 || x > 1) { - return std::numeric_limits::quiet_NaN(); - } else if (x == 1.0) { - return std::numeric_limits::infinity(); - } else if (x == -1.0) { - return -std::numeric_limits::infinity(); - } - - const T LN2 = 6.931471805599453094172321214581e-1; - - const T A0 = 1.1975323115670912564578e0; - const T A1 = 4.7072688112383978012285e1; - const T A2 = 6.9706266534389598238465e2; - const T A3 = 4.8548868893843886794648e3; - const T A4 = 1.6235862515167575384252e4; - const T A5 = 2.3782041382114385731252e4; - const T A6 = 1.1819493347062294404278e4; - const T A7 = 8.8709406962545514830200e2; - - const T B0 = 1.0000000000000000000e0; - const T B1 = 4.2313330701600911252e1; - const T B2 = 6.8718700749205790830e2; - const T B3 = 5.3941960214247511077e3; - const T B4 = 2.1213794301586595867e4; - const T B5 = 3.9307895800092710610e4; - const T B6 = 2.8729085735721942674e4; - const T B7 = 5.2264952788528545610e3; - - const T C0 = 1.42343711074968357734e0; - const T C1 = 4.63033784615654529590e0; - const T C2 = 5.76949722146069140550e0; - const T C3 = 3.64784832476320460504e0; - const T C4 = 1.27045825245236838258e0; - const T C5 = 2.41780725177450611770e-1; - const T C6 = 2.27238449892691845833e-2; - const T C7 = 7.74545014278341407640e-4; - - const T D0 = 1.4142135623730950488016887e0; - const T D1 = 2.9036514445419946173133295e0; - const T D2 = 2.3707661626024532365971225e0; - const T D3 = 9.7547832001787427186894837e-1; - const T D4 = 2.0945065210512749128288442e-1; - const T D5 = 2.1494160384252876777097297e-2; - const T D6 = 7.7441459065157709165577218e-4; - const T D7 = 1.4859850019840355905497876e-9; - - const T E0 = 6.65790464350110377720e0; - const T E1 = 5.46378491116411436990e0; - const T E2 = 1.78482653991729133580e0; - const T E3 = 2.96560571828504891230e-1; - const T E4 = 2.65321895265761230930e-2; - const T E5 = 1.24266094738807843860e-3; - const T E6 = 2.71155556874348757815e-5; - const T E7 = 2.01033439929228813265e-7; - - const T F0 = 1.414213562373095048801689e0; - const T F1 = 8.482908416595164588112026e-1; - const T F2 = 1.936480946950659106176712e-1; - const T F3 = 2.103693768272068968719679e-2; - const T F4 = 1.112800997078859844711555e-3; - const T F5 = 2.611088405080593625138020e-5; - const T F6 = 2.010321207683943062279931e-7; - const T F7 = 2.891024605872965461538222e-15; - - T abs_x = abs(x); - - if (abs_x <= 0.85) { - T r = 0.180625 - 0.25 * x * x; - T num = - (((((((A7 * r + A6) * r + A5) * r + A4) * r + A3) * r + A2) * r + A1) * - r + - A0); - T den = - (((((((B7 * r + B6) * r + B5) * r + B4) * r + B3) * r + B2) * r + B1) * - r + - B0); - return x * num / den; - } - - T r = sqrt(LN2 - log(1.0 - abs_x)); - - T num, den; - if (r <= 5.0) { - r = r - 1.6; - num = - (((((((C7 * r + C6) * r + C5) * r + C4) * r + C3) * r + C2) * r + C1) * - r + - C0); - den = - (((((((D7 * r + D6) * r + D5) * r + D4) * r + D3) * r + D2) * r + D1) * - r + - D0); - } else { - r = r - 5.0; - num = - (((((((E7 * r + E6) * r + E5) * r + E4) * r + E3) * r + E2) * r + E1) * - r + - E0); - den = - (((((((F7 * r + F6) * r + F5) * r + F4) * r + F3) * r + F2) * r + F1) * - r + - F0); - } - - if (x < 0) { - return -num / den; - } else { - return num / den; - } -} - -template -struct TruncatedNormal { - T mean, std; - T a_normal_cdf; - T b_normal_cdf; - TruncatedNormal(T mean, T std) : mean(mean), std(std) { - auto normal_cdf = [](T x) { - return (1.0 + std::erf(x / std::sqrt(2.0))) / 2.0; - }; - a_normal_cdf = normal_cdf(-2.0); - b_normal_cdf = normal_cdf(2.0); - } - - T operator()(T value) const { - auto p = a_normal_cdf + (b_normal_cdf - a_normal_cdf) * value; - return std::sqrt(2.0) * Erfinv(2 * p - 1) * std + mean; - } -}; - template void TruncatedGaussianRandomKernel(const Context& dev_ctx, const std::vector& shape, diff --git a/paddle/phi/kernels/funcs/truncated_normal.h b/paddle/phi/kernels/funcs/truncated_normal.h new file mode 100644 index 00000000000..8b58b72416e --- /dev/null +++ b/paddle/phi/kernels/funcs/truncated_normal.h @@ -0,0 +1,148 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +// reference: https://gist.github.com/lakshayg/d80172fe5ae3c5d2c2aedb53c250320e +template +T Erfinv(T x) { + if (x < -1 || x > 1) { + return std::numeric_limits::quiet_NaN(); + } else if (x == 1.0) { + return std::numeric_limits::infinity(); + } else if (x == -1.0) { + return -std::numeric_limits::infinity(); + } + + const T LN2 = 6.931471805599453094172321214581e-1; + + const T A0 = 1.1975323115670912564578e0; + const T A1 = 4.7072688112383978012285e1; + const T A2 = 6.9706266534389598238465e2; + const T A3 = 4.8548868893843886794648e3; + const T A4 = 1.6235862515167575384252e4; + const T A5 = 2.3782041382114385731252e4; + const T A6 = 1.1819493347062294404278e4; + const T A7 = 8.8709406962545514830200e2; + + const T B0 = 1.0000000000000000000e0; + const T B1 = 4.2313330701600911252e1; + const T B2 = 6.8718700749205790830e2; + const T B3 = 5.3941960214247511077e3; + const T B4 = 2.1213794301586595867e4; + const T B5 = 3.9307895800092710610e4; + const T B6 = 2.8729085735721942674e4; + const T B7 = 5.2264952788528545610e3; + + const T C0 = 1.42343711074968357734e0; + const T C1 = 4.63033784615654529590e0; + const T C2 = 5.76949722146069140550e0; + const T C3 = 3.64784832476320460504e0; + const T C4 = 1.27045825245236838258e0; + const T C5 = 2.41780725177450611770e-1; + const T C6 = 2.27238449892691845833e-2; + const T C7 = 7.74545014278341407640e-4; + + const T D0 = 1.4142135623730950488016887e0; + const T D1 = 2.9036514445419946173133295e0; + const T D2 = 2.3707661626024532365971225e0; + const T D3 = 9.7547832001787427186894837e-1; + const T D4 = 2.0945065210512749128288442e-1; + const T D5 = 2.1494160384252876777097297e-2; + const T D6 = 7.7441459065157709165577218e-4; + const T D7 = 1.4859850019840355905497876e-9; + + const T E0 = 6.65790464350110377720e0; + const T E1 = 5.46378491116411436990e0; + const T E2 = 1.78482653991729133580e0; + const T E3 = 2.96560571828504891230e-1; + const T E4 = 2.65321895265761230930e-2; + const T E5 = 1.24266094738807843860e-3; + const T E6 = 2.71155556874348757815e-5; + const T E7 = 2.01033439929228813265e-7; + + const T F0 = 1.414213562373095048801689e0; + const T F1 = 8.482908416595164588112026e-1; + const T F2 = 1.936480946950659106176712e-1; + const T F3 = 2.103693768272068968719679e-2; + const T F4 = 1.112800997078859844711555e-3; + const T F5 = 2.611088405080593625138020e-5; + const T F6 = 2.010321207683943062279931e-7; + const T F7 = 2.891024605872965461538222e-15; + + T abs_x = abs(x); + + if (abs_x <= 0.85) { + T r = 0.180625 - 0.25 * x * x; + T num = + (((((((A7 * r + A6) * r + A5) * r + A4) * r + A3) * r + A2) * r + A1) * + r + + A0); + T den = + (((((((B7 * r + B6) * r + B5) * r + B4) * r + B3) * r + B2) * r + B1) * + r + + B0); + return x * num / den; + } + + T r = sqrt(LN2 - log(1.0 - abs_x)); + + T num, den; + if (r <= 5.0) { + r = r - 1.6; + num = + (((((((C7 * r + C6) * r + C5) * r + C4) * r + C3) * r + C2) * r + C1) * + r + + C0); + den = + (((((((D7 * r + D6) * r + D5) * r + D4) * r + D3) * r + D2) * r + D1) * + r + + D0); + } else { + r = r - 5.0; + num = + (((((((E7 * r + E6) * r + E5) * r + E4) * r + E3) * r + E2) * r + E1) * + r + + E0); + den = + (((((((F7 * r + F6) * r + F5) * r + F4) * r + F3) * r + F2) * r + F1) * + r + + F0); + } + + if (x < 0) { + return -num / den; + } else { + return num / den; + } +} + +template +struct TruncatedNormal { + T mean, std; + T a_normal_cdf; + T b_normal_cdf; + TruncatedNormal(T mean, T std) : mean(mean), std(std) { + auto normal_cdf = [](T x) { + return (1.0 + std::erf(x / std::sqrt(2.0))) / 2.0; + }; + a_normal_cdf = normal_cdf(-2.0); + b_normal_cdf = normal_cdf(2.0); + } + + T operator()(T value) const { + auto p = a_normal_cdf + (b_normal_cdf - a_normal_cdf) * value; + return std::sqrt(2.0) * Erfinv(2 * p - 1) * std + mean; + } +}; diff --git a/paddle/phi/kernels/xpu/truncated_gaussian_random_kernel.cc b/paddle/phi/kernels/xpu/truncated_gaussian_random_kernel.cc new file mode 100644 index 00000000000..25a19d11ef5 --- /dev/null +++ b/paddle/phi/kernels/xpu/truncated_gaussian_random_kernel.cc @@ -0,0 +1,69 @@ +/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/phi/kernels/truncated_gaussian_random_kernel.h" + +#include +#include + +#include "paddle/fluid/memory/memcpy.h" +#include "paddle/phi/backends/cpu/cpu_context.h" +#include "paddle/phi/backends/xpu/xpu_context.h" +#include "paddle/phi/core/kernel_registry.h" +#include "paddle/phi/kernels/funcs/truncated_normal.h" + +namespace phi { + +template +void TruncatedGaussianRandomKernel(const Context& dev_ctx, + const std::vector& shape, + float mean, + float std, + int seed, + DataType dtype, + DenseTensor* out) { + T* data = dev_ctx.template Alloc(out); + + std::uniform_real_distribution dist(std::numeric_limits::min(), + 1.0); + TruncatedNormal truncated_normal(mean, std); + int64_t size = out->numel(); + std::unique_ptr data_cpu(new T[size]); + + std::shared_ptr engine; + if (seed) { + engine = std::make_shared(); + engine->seed(seed); + } else { + engine = dev_ctx.GetGenerator()->GetCPUEngine(); + } + + for (int64_t i = 0; i < size; ++i) { + data_cpu[i] = truncated_normal(dist(*engine)); + } + + paddle::memory::Copy(dev_ctx.GetPlace(), + data, + phi::CPUPlace(), + reinterpret_cast(data_cpu.get()), + size * sizeof(T)); +} + +} // namespace phi + +PD_REGISTER_KERNEL(truncated_gaussian_random, + XPU, + ALL_LAYOUT, + phi::TruncatedGaussianRandomKernel, + float) {} -- GitLab