提交 8063b31e 编写于 作者: Z Zhen Wang

Reduce redundant code for channel wise dequant op. test=develop

上级 e8f9dac7
...@@ -65,27 +65,20 @@ class FakeChannelWiseDequantizeMaxAbsKernel : public framework::OpKernel<T> { ...@@ -65,27 +65,20 @@ class FakeChannelWiseDequantizeMaxAbsKernel : public framework::OpKernel<T> {
out->mutable_data<T>(dev_ctx.GetPlace()); out->mutable_data<T>(dev_ctx.GetPlace());
auto dequant = DequantizeFunctor<DeviceContext, T>(); auto dequant = DequantizeFunctor<DeviceContext, T>();
for (int64_t i = 0; i < in->dims()[0]; i++) {
framework::Tensor one_channel_in = in->Slice(i, i + 1);
framework::Tensor one_channel_out = out->Slice(i, i + 1);
framework::Tensor one_channel_scale = scales[0]->Slice(i, i + 1);
dequant(dev_ctx, &one_channel_in, &one_channel_scale,
static_cast<T>(max_range), &one_channel_out);
}
if (scales.size() == 2) { if (scales.size() == 2) {
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
scales[1]->numel(), 1, scales[1]->numel(), 1,
"The second scale tensor should only have one value at now."); "The second scale tensor should only have one value at now.");
for (int64_t i = 0; i < in->dims()[0]; i++) { max_range = std::pow(2, quant_bits[1] - 1) - 1;
framework::Tensor one_channel_in = in->Slice(i, i + 1); dequant(dev_ctx, out, scales[1], static_cast<T>(max_range), out);
framework::Tensor one_channel_out = out->Slice(i, i + 1);
framework::Tensor one_channel_scale = scales[0]->Slice(i, i + 1);
max_range *= (std::pow(2, quant_bits[1] - 1) - 1);
dequant(dev_ctx, &one_channel_in, &one_channel_scale,
static_cast<T>(max_range), &one_channel_out);
}
dequant(dev_ctx, out, scales[1], static_cast<T>(1), out);
} else {
for (int64_t i = 0; i < in->dims()[0]; i++) {
framework::Tensor one_channel_in = in->Slice(i, i + 1);
framework::Tensor one_channel_out = out->Slice(i, i + 1);
framework::Tensor one_channel_scale = scales[0]->Slice(i, i + 1);
dequant(dev_ctx, &one_channel_in, &one_channel_scale,
static_cast<T>(max_range), &one_channel_out);
}
} }
} }
}; };
......
...@@ -31,42 +31,49 @@ def dequantize_max_abs(x, scale, max_range): ...@@ -31,42 +31,49 @@ def dequantize_max_abs(x, scale, max_range):
return y return y
def channel_wise_quantize_max_abs(x, max_range): def channel_wise_quantize_max_abs(x, quant_bit=8):
scales = [] scales = []
for i in range(x.shape[0]): for i in range(x.shape[0]):
scales.append(np.max(np.abs(x[i])).astype("float32")) scales.append(np.max(np.abs(x[i])).astype("float32"))
y = x.copy() y = x.copy()
max_range = math.pow(2, quant_bit - 1) - 1
for i, scale in enumerate(scales): for i, scale in enumerate(scales):
y[i] = np.round(y[i] / scale * max_range) y[i] = np.round(y[i] / scale * max_range)
return y, scales return y, scales
def channel_wise_dequantize_max_abs(x, scales, max_range): def channel_wise_dequantize_max_abs(x,
scales,
quant_bits,
activation_scale=None):
y = x.copy() y = x.copy()
for i in range(x.shape[0]): for i in range(x.shape[0]):
y[i] = (scales[i] / max_range) * y[i] y[i] = (scales[i] / (math.pow(2, quant_bits[0] - 1) - 1)) * y[i]
if activation_scale is not None:
y *= activation_scale / (math.pow(2, quant_bits[1] - 1) - 1)
return y return y
class TestFakeChannelWiseDequantizeMaxAbsOpTwoScales(OpTest): class TestFakeChannelWiseDequantizeMaxAbsOpTwoScales(OpTest):
def set_args(self): def set_args(self):
self.quant_bits = [8, 2] self.quant_bits = [8, 8]
self.data_type = "float32" self.data_type = "float32"
self.activation_scale = 0.7861
def setUp(self): def setUp(self):
self.set_args() self.set_args()
self.op_type = "fake_channel_wise_dequantize_max_abs" self.op_type = "fake_channel_wise_dequantize_max_abs"
x = np.random.randn(4, 3, 64, 64).astype(self.data_type) x = np.random.randn(4, 3, 64, 64).astype(self.data_type)
max_range = math.pow(2, self.quant_bits[0] - 1) - 1 yq, scales = channel_wise_quantize_max_abs(x, self.quant_bits[0])
max_range *= (math.pow(2, self.quant_bits[1] - 1) - 1) ydq = channel_wise_dequantize_max_abs(yq, scales, self.quant_bits,
yq, scales = channel_wise_quantize_max_abs(x, max_range) self.activation_scale)
ydq = channel_wise_dequantize_max_abs(yq, scales, max_range)
self.inputs = { self.inputs = {
'X': yq, 'X': yq,
'Scales': [("scales0", np.array(scales).astype(self.data_type)), 'Scales': [("scales0", np.array(scales).astype(self.data_type)),
("scales1", np.array([1.0]).astype(self.data_type))] ("scales1", np.array(
[self.activation_scale]).astype(self.data_type))]
} }
self.attrs = {'quant_bits': self.quant_bits} self.attrs = {'quant_bits': self.quant_bits}
self.outputs = {'Out': ydq} self.outputs = {'Out': ydq}
...@@ -84,9 +91,8 @@ class TestFakeChannelWiseDequantizeMaxAbsOpOneScale(OpTest): ...@@ -84,9 +91,8 @@ class TestFakeChannelWiseDequantizeMaxAbsOpOneScale(OpTest):
self.set_args() self.set_args()
self.op_type = "fake_channel_wise_dequantize_max_abs" self.op_type = "fake_channel_wise_dequantize_max_abs"
x = np.random.randn(4, 3, 64, 64).astype(self.data_type) x = np.random.randn(4, 3, 64, 64).astype(self.data_type)
max_range = math.pow(2, self.quant_bits[0] - 1) - 1 yq, scales = channel_wise_quantize_max_abs(x, self.quant_bits[0])
yq, scales = channel_wise_quantize_max_abs(x, max_range) ydq = channel_wise_dequantize_max_abs(yq, scales, self.quant_bits)
ydq = channel_wise_dequantize_max_abs(yq, scales, max_range)
self.inputs = { self.inputs = {
'X': yq, 'X': yq,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册