Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
8063b31e
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8063b31e
编写于
3月 05, 2019
作者:
Z
Zhen Wang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Reduce redundant code for channel wise dequant op. test=develop
上级
e8f9dac7
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
28 addition
and
29 deletion
+28
-29
paddle/fluid/operators/fake_dequantize_op.h
paddle/fluid/operators/fake_dequantize_op.h
+10
-17
python/paddle/fluid/tests/unittests/test_fake_dequantize_op.py
...n/paddle/fluid/tests/unittests/test_fake_dequantize_op.py
+18
-12
未找到文件。
paddle/fluid/operators/fake_dequantize_op.h
浏览文件 @
8063b31e
...
...
@@ -65,27 +65,20 @@ class FakeChannelWiseDequantizeMaxAbsKernel : public framework::OpKernel<T> {
out
->
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
());
auto
dequant
=
DequantizeFunctor
<
DeviceContext
,
T
>
();
for
(
int64_t
i
=
0
;
i
<
in
->
dims
()[
0
];
i
++
)
{
framework
::
Tensor
one_channel_in
=
in
->
Slice
(
i
,
i
+
1
);
framework
::
Tensor
one_channel_out
=
out
->
Slice
(
i
,
i
+
1
);
framework
::
Tensor
one_channel_scale
=
scales
[
0
]
->
Slice
(
i
,
i
+
1
);
dequant
(
dev_ctx
,
&
one_channel_in
,
&
one_channel_scale
,
static_cast
<
T
>
(
max_range
),
&
one_channel_out
);
}
if
(
scales
.
size
()
==
2
)
{
PADDLE_ENFORCE_EQ
(
scales
[
1
]
->
numel
(),
1
,
"The second scale tensor should only have one value at now."
);
for
(
int64_t
i
=
0
;
i
<
in
->
dims
()[
0
];
i
++
)
{
framework
::
Tensor
one_channel_in
=
in
->
Slice
(
i
,
i
+
1
);
framework
::
Tensor
one_channel_out
=
out
->
Slice
(
i
,
i
+
1
);
framework
::
Tensor
one_channel_scale
=
scales
[
0
]
->
Slice
(
i
,
i
+
1
);
max_range
*=
(
std
::
pow
(
2
,
quant_bits
[
1
]
-
1
)
-
1
);
dequant
(
dev_ctx
,
&
one_channel_in
,
&
one_channel_scale
,
static_cast
<
T
>
(
max_range
),
&
one_channel_out
);
}
dequant
(
dev_ctx
,
out
,
scales
[
1
],
static_cast
<
T
>
(
1
),
out
);
}
else
{
for
(
int64_t
i
=
0
;
i
<
in
->
dims
()[
0
];
i
++
)
{
framework
::
Tensor
one_channel_in
=
in
->
Slice
(
i
,
i
+
1
);
framework
::
Tensor
one_channel_out
=
out
->
Slice
(
i
,
i
+
1
);
framework
::
Tensor
one_channel_scale
=
scales
[
0
]
->
Slice
(
i
,
i
+
1
);
dequant
(
dev_ctx
,
&
one_channel_in
,
&
one_channel_scale
,
static_cast
<
T
>
(
max_range
),
&
one_channel_out
);
}
max_range
=
std
::
pow
(
2
,
quant_bits
[
1
]
-
1
)
-
1
;
dequant
(
dev_ctx
,
out
,
scales
[
1
],
static_cast
<
T
>
(
max_range
),
out
);
}
}
};
...
...
python/paddle/fluid/tests/unittests/test_fake_dequantize_op.py
浏览文件 @
8063b31e
...
...
@@ -31,42 +31,49 @@ def dequantize_max_abs(x, scale, max_range):
return
y
def
channel_wise_quantize_max_abs
(
x
,
max_range
):
def
channel_wise_quantize_max_abs
(
x
,
quant_bit
=
8
):
scales
=
[]
for
i
in
range
(
x
.
shape
[
0
]):
scales
.
append
(
np
.
max
(
np
.
abs
(
x
[
i
])).
astype
(
"float32"
))
y
=
x
.
copy
()
max_range
=
math
.
pow
(
2
,
quant_bit
-
1
)
-
1
for
i
,
scale
in
enumerate
(
scales
):
y
[
i
]
=
np
.
round
(
y
[
i
]
/
scale
*
max_range
)
return
y
,
scales
def
channel_wise_dequantize_max_abs
(
x
,
scales
,
max_range
):
def
channel_wise_dequantize_max_abs
(
x
,
scales
,
quant_bits
,
activation_scale
=
None
):
y
=
x
.
copy
()
for
i
in
range
(
x
.
shape
[
0
]):
y
[
i
]
=
(
scales
[
i
]
/
max_range
)
*
y
[
i
]
y
[
i
]
=
(
scales
[
i
]
/
(
math
.
pow
(
2
,
quant_bits
[
0
]
-
1
)
-
1
))
*
y
[
i
]
if
activation_scale
is
not
None
:
y
*=
activation_scale
/
(
math
.
pow
(
2
,
quant_bits
[
1
]
-
1
)
-
1
)
return
y
class
TestFakeChannelWiseDequantizeMaxAbsOpTwoScales
(
OpTest
):
def
set_args
(
self
):
self
.
quant_bits
=
[
8
,
2
]
self
.
quant_bits
=
[
8
,
8
]
self
.
data_type
=
"float32"
self
.
activation_scale
=
0.7861
def
setUp
(
self
):
self
.
set_args
()
self
.
op_type
=
"fake_channel_wise_dequantize_max_abs"
x
=
np
.
random
.
randn
(
4
,
3
,
64
,
64
).
astype
(
self
.
data_type
)
max_range
=
math
.
pow
(
2
,
self
.
quant_bits
[
0
]
-
1
)
-
1
max_range
*=
(
math
.
pow
(
2
,
self
.
quant_bits
[
1
]
-
1
)
-
1
)
yq
,
scales
=
channel_wise_quantize_max_abs
(
x
,
max_range
)
ydq
=
channel_wise_dequantize_max_abs
(
yq
,
scales
,
max_range
)
yq
,
scales
=
channel_wise_quantize_max_abs
(
x
,
self
.
quant_bits
[
0
])
ydq
=
channel_wise_dequantize_max_abs
(
yq
,
scales
,
self
.
quant_bits
,
self
.
activation_scale
)
self
.
inputs
=
{
'X'
:
yq
,
'Scales'
:
[(
"scales0"
,
np
.
array
(
scales
).
astype
(
self
.
data_type
)),
(
"scales1"
,
np
.
array
([
1.0
]).
astype
(
self
.
data_type
))]
(
"scales1"
,
np
.
array
(
[
self
.
activation_scale
]).
astype
(
self
.
data_type
))]
}
self
.
attrs
=
{
'quant_bits'
:
self
.
quant_bits
}
self
.
outputs
=
{
'Out'
:
ydq
}
...
...
@@ -84,9 +91,8 @@ class TestFakeChannelWiseDequantizeMaxAbsOpOneScale(OpTest):
self
.
set_args
()
self
.
op_type
=
"fake_channel_wise_dequantize_max_abs"
x
=
np
.
random
.
randn
(
4
,
3
,
64
,
64
).
astype
(
self
.
data_type
)
max_range
=
math
.
pow
(
2
,
self
.
quant_bits
[
0
]
-
1
)
-
1
yq
,
scales
=
channel_wise_quantize_max_abs
(
x
,
max_range
)
ydq
=
channel_wise_dequantize_max_abs
(
yq
,
scales
,
max_range
)
yq
,
scales
=
channel_wise_quantize_max_abs
(
x
,
self
.
quant_bits
[
0
])
ydq
=
channel_wise_dequantize_max_abs
(
yq
,
scales
,
self
.
quant_bits
)
self
.
inputs
=
{
'X'
:
yq
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录