Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
6375ad39
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6375ad39
编写于
10月 20, 2020
作者:
K
Kaipeng Deng
提交者:
GitHub
10月 20, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[cherry-pick] lr scheduler epoch2step (#28056)
* hapi/model step learning rate on batch end. test=develop
上级
11adb0f3
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
73 addition
and
1 deletion
+73
-1
python/paddle/hapi/model.py
python/paddle/hapi/model.py
+13
-0
python/paddle/tests/test_model.py
python/paddle/tests/test_model.py
+60
-1
未找到文件。
python/paddle/hapi/model.py
浏览文件 @
6375ad39
...
@@ -453,6 +453,12 @@ class StaticGraphAdapter(object):
...
@@ -453,6 +453,12 @@ class StaticGraphAdapter(object):
if
len
(
name
)
>
0
:
if
len
(
name
)
>
0
:
rets
.
insert
(
i
,
feed
[
name
])
rets
.
insert
(
i
,
feed
[
name
])
# step learning rate scheduler on each batch end
if
self
.
model
.
_optimizer
and
\
isinstance
(
self
.
model
.
_optimizer
.
_learning_rate
,
paddle
.
optimizer
.
lr
.
LRScheduler
):
self
.
model
.
_optimizer
.
_learning_rate
.
step
()
# LoDTensor cannot be fetch as numpy directly
# LoDTensor cannot be fetch as numpy directly
rets
=
[
np
.
array
(
v
)
for
v
in
rets
]
rets
=
[
np
.
array
(
v
)
for
v
in
rets
]
if
self
.
mode
==
'test'
:
if
self
.
mode
==
'test'
:
...
@@ -652,6 +658,13 @@ class DynamicGraphAdapter(object):
...
@@ -652,6 +658,13 @@ class DynamicGraphAdapter(object):
self
.
model
.
_optimizer
.
minimize
(
final_loss
)
self
.
model
.
_optimizer
.
minimize
(
final_loss
)
self
.
model
.
network
.
clear_gradients
()
self
.
model
.
network
.
clear_gradients
()
# step learning rate scheduler on each batch end
if
self
.
model
.
_optimizer
and
\
isinstance
(
self
.
model
.
_optimizer
.
_learning_rate
,
paddle
.
optimizer
.
lr
.
LRScheduler
):
self
.
model
.
_optimizer
.
_learning_rate
.
step
()
metrics
=
[]
metrics
=
[]
for
metric
in
self
.
model
.
_metrics
:
for
metric
in
self
.
model
.
_metrics
:
metric_outs
=
metric
.
compute
(
*
(
to_list
(
outputs
)
+
labels
))
metric_outs
=
metric
.
compute
(
*
(
to_list
(
outputs
)
+
labels
))
...
...
python/paddle/tests/test_model.py
浏览文件 @
6375ad39
...
@@ -33,7 +33,7 @@ from paddle.nn.layer.loss import CrossEntropyLoss
...
@@ -33,7 +33,7 @@ from paddle.nn.layer.loss import CrossEntropyLoss
from
paddle.metric
import
Accuracy
from
paddle.metric
import
Accuracy
from
paddle.vision.datasets
import
MNIST
from
paddle.vision.datasets
import
MNIST
from
paddle.vision.models
import
LeNet
from
paddle.vision.models
import
LeNet
from
paddle.io
import
DistributedBatchSampler
from
paddle.io
import
DistributedBatchSampler
,
Dataset
from
paddle.hapi.model
import
prepare_distributed_context
from
paddle.hapi.model
import
prepare_distributed_context
from
paddle.fluid.dygraph.jit
import
declarative
from
paddle.fluid.dygraph.jit
import
declarative
from
paddle.fluid.dygraph.dygraph_to_static.program_translator
import
ProgramTranslator
from
paddle.fluid.dygraph.dygraph_to_static.program_translator
import
ProgramTranslator
...
@@ -295,6 +295,15 @@ class MyModel(paddle.nn.Layer):
...
@@ -295,6 +295,15 @@ class MyModel(paddle.nn.Layer):
return
y
return
y
class
MyDataset
(
Dataset
):
def
__getitem__
(
self
,
idx
):
return
np
.
random
.
random
(
size
=
(
20
,)).
astype
(
np
.
float32
),
\
np
.
random
.
randint
(
0
,
10
,
size
=
(
1
,)).
astype
(
np
.
int64
)
def
__len__
(
self
):
return
40
class
TestModelFunction
(
unittest
.
TestCase
):
class
TestModelFunction
(
unittest
.
TestCase
):
def
set_seed
(
self
,
seed
=
1024
):
def
set_seed
(
self
,
seed
=
1024
):
paddle
.
manual_seed
(
seed
)
paddle
.
manual_seed
(
seed
)
...
@@ -599,6 +608,56 @@ class TestModelFunction(unittest.TestCase):
...
@@ -599,6 +608,56 @@ class TestModelFunction(unittest.TestCase):
shutil
.
rmtree
(
save_dir
)
shutil
.
rmtree
(
save_dir
)
class
TestModelWithLRScheduler
(
unittest
.
TestCase
):
def
test_fit
(
self
):
def
make_optimizer
(
parameters
=
None
):
base_lr
=
1e-3
momentum
=
0.9
weight_decay
=
5e-4
boundaries
=
[
5
,
8
]
values
=
[
base_lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
boundaries
)
+
1
)]
learning_rate
=
paddle
.
optimizer
.
lr
.
PiecewiseDecay
(
boundaries
=
boundaries
,
values
=
values
)
learning_rate
=
paddle
.
optimizer
.
lr
.
LinearWarmup
(
learning_rate
=
learning_rate
,
warmup_steps
=
4
,
start_lr
=
base_lr
/
5.
,
end_lr
=
base_lr
,
verbose
=
True
)
optimizer
=
paddle
.
optimizer
.
Momentum
(
learning_rate
=
learning_rate
,
weight_decay
=
weight_decay
,
momentum
=
momentum
,
parameters
=
parameters
)
return
optimizer
# dynamic test
device
=
paddle
.
set_device
(
'cpu'
)
fluid
.
enable_dygraph
(
device
)
net
=
MyModel
()
inputs
=
[
InputSpec
([
None
,
20
],
'float32'
,
'x'
)]
labels
=
[
InputSpec
([
None
,
1
],
'int64'
,
'label'
)]
optim
=
make_optimizer
(
net
.
parameters
())
model
=
Model
(
net
,
inputs
,
labels
)
model
.
prepare
(
optimizer
=
optim
,
loss
=
CrossEntropyLoss
(
reduction
=
"sum"
))
dataset
=
MyDataset
()
model
.
fit
(
dataset
,
dataset
,
batch_size
=
4
,
epochs
=
10
,
num_workers
=
0
)
# static test
paddle
.
enable_static
()
net
=
MyModel
()
inputs
=
[
InputSpec
([
None
,
20
],
'float32'
,
'x'
)]
labels
=
[
InputSpec
([
None
,
1
],
'int64'
,
'label'
)]
optim
=
make_optimizer
(
net
.
parameters
())
model
=
Model
(
net
,
inputs
,
labels
)
model
.
prepare
(
optimizer
=
optim
,
loss
=
CrossEntropyLoss
(
reduction
=
"sum"
))
dataset
=
MyDataset
()
model
.
fit
(
dataset
,
dataset
,
batch_size
=
4
,
epochs
=
10
,
num_workers
=
0
)
class
TestRaiseError
(
unittest
.
TestCase
):
class
TestRaiseError
(
unittest
.
TestCase
):
def
test_input_without_name
(
self
):
def
test_input_without_name
(
self
):
net
=
MyModel
()
net
=
MyModel
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录