未验证 提交 6375ad39 编写于 作者: K Kaipeng Deng 提交者: GitHub

[cherry-pick] lr scheduler epoch2step (#28056)

* hapi/model step learning rate on batch end. test=develop
上级 11adb0f3
......@@ -453,6 +453,12 @@ class StaticGraphAdapter(object):
if len(name) > 0:
rets.insert(i, feed[name])
# step learning rate scheduler on each batch end
if self.model._optimizer and \
isinstance(self.model._optimizer._learning_rate,
paddle.optimizer.lr.LRScheduler):
self.model._optimizer._learning_rate.step()
# LoDTensor cannot be fetch as numpy directly
rets = [np.array(v) for v in rets]
if self.mode == 'test':
......@@ -652,6 +658,13 @@ class DynamicGraphAdapter(object):
self.model._optimizer.minimize(final_loss)
self.model.network.clear_gradients()
# step learning rate scheduler on each batch end
if self.model._optimizer and \
isinstance(self.model._optimizer._learning_rate,
paddle.optimizer.lr.LRScheduler):
self.model._optimizer._learning_rate.step()
metrics = []
for metric in self.model._metrics:
metric_outs = metric.compute(*(to_list(outputs) + labels))
......
......@@ -33,7 +33,7 @@ from paddle.nn.layer.loss import CrossEntropyLoss
from paddle.metric import Accuracy
from paddle.vision.datasets import MNIST
from paddle.vision.models import LeNet
from paddle.io import DistributedBatchSampler
from paddle.io import DistributedBatchSampler, Dataset
from paddle.hapi.model import prepare_distributed_context
from paddle.fluid.dygraph.jit import declarative
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator
......@@ -295,6 +295,15 @@ class MyModel(paddle.nn.Layer):
return y
class MyDataset(Dataset):
def __getitem__(self, idx):
return np.random.random(size=(20,)).astype(np.float32), \
np.random.randint(0, 10, size=(1,)).astype(np.int64)
def __len__(self):
return 40
class TestModelFunction(unittest.TestCase):
def set_seed(self, seed=1024):
paddle.manual_seed(seed)
......@@ -599,6 +608,56 @@ class TestModelFunction(unittest.TestCase):
shutil.rmtree(save_dir)
class TestModelWithLRScheduler(unittest.TestCase):
def test_fit(self):
def make_optimizer(parameters=None):
base_lr = 1e-3
momentum = 0.9
weight_decay = 5e-4
boundaries = [5, 8]
values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
learning_rate = paddle.optimizer.lr.PiecewiseDecay(
boundaries=boundaries, values=values)
learning_rate = paddle.optimizer.lr.LinearWarmup(
learning_rate=learning_rate,
warmup_steps=4,
start_lr=base_lr / 5.,
end_lr=base_lr,
verbose=True)
optimizer = paddle.optimizer.Momentum(
learning_rate=learning_rate,
weight_decay=weight_decay,
momentum=momentum,
parameters=parameters)
return optimizer
# dynamic test
device = paddle.set_device('cpu')
fluid.enable_dygraph(device)
net = MyModel()
inputs = [InputSpec([None, 20], 'float32', 'x')]
labels = [InputSpec([None, 1], 'int64', 'label')]
optim = make_optimizer(net.parameters())
model = Model(net, inputs, labels)
model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
dataset = MyDataset()
model.fit(dataset, dataset, batch_size=4, epochs=10, num_workers=0)
# static test
paddle.enable_static()
net = MyModel()
inputs = [InputSpec([None, 20], 'float32', 'x')]
labels = [InputSpec([None, 1], 'int64', 'label')]
optim = make_optimizer(net.parameters())
model = Model(net, inputs, labels)
model.prepare(optimizer=optim, loss=CrossEntropyLoss(reduction="sum"))
dataset = MyDataset()
model.fit(dataset, dataset, batch_size=4, epochs=10, num_workers=0)
class TestRaiseError(unittest.TestCase):
def test_input_without_name(self):
net = MyModel()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册