Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
463f88a7
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
463f88a7
编写于
4月 11, 2019
作者:
L
lujun
提交者:
GitHub
4月 11, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #16672 from junjun315/cherry-pick-move-nn
cherry-pick 16520, add NN and utest
上级
ed0f1ae4
b90c08c3
变更
3
展开全部
隐藏空白更改
内联
并排
Showing
3 changed file
with
816 addition
and
9 deletion
+816
-9
python/paddle/fluid/dygraph/nn.py
python/paddle/fluid/dygraph/nn.py
+540
-8
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+2
-1
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+274
-0
未找到文件。
python/paddle/fluid/dygraph/nn.py
浏览文件 @
463f88a7
此差异已折叠。
点击以展开。
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
463f88a7
...
...
@@ -80,6 +80,7 @@ list(REMOVE_ITEM TEST_OPS test_nearest_interp_op)
list
(
REMOVE_ITEM TEST_OPS test_imperative_resnet
)
list
(
REMOVE_ITEM TEST_OPS test_imperative_mnist
)
list
(
REMOVE_ITEM TEST_OPS test_ir_memory_optimize_transformer
)
list
(
REMOVE_ITEM TEST_OPS test_layers
)
foreach
(
TEST_OP
${
TEST_OPS
}
)
py_test_modules
(
${
TEST_OP
}
MODULES
${
TEST_OP
}
)
endforeach
(
TEST_OP
)
...
...
@@ -114,7 +115,7 @@ py_test_modules(test_parallel_executor_crf MODULES test_parallel_executor_crf SE
py_test_modules
(
test_parallel_executor_fetch_feed MODULES test_parallel_executor_fetch_feed SERIAL
)
set_tests_properties
(
test_parallel_executor_fetch_feed PROPERTIES TIMEOUT 450
)
py_test_modules
(
test_parallel_executor_transformer MODULES test_parallel_executor_transformer SERIAL
)
py_test_modules
(
test_layers MODULES test_layers ENVS FLAGS_cudnn_deterministic=1
)
if
(
NOT WIN32
)
py_test_modules
(
test_ir_memory_optimize_transformer MODULES test_ir_memory_optimize_transformer SERIAL
)
endif
()
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
463f88a7
...
...
@@ -560,6 +560,280 @@ class TestLayer(LayerTest):
self
.
assertTrue
(
np
.
allclose
(
static_rlt2
,
static_rlt
))
self
.
assertTrue
(
np
.
allclose
(
nce_loss3
.
_numpy
(),
static_rlt
))
def
test_conv3d
(
self
):
with
self
.
static_graph
():
images
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
6
,
6
,
6
],
dtype
=
'float32'
)
ret
=
layers
.
conv3d
(
input
=
images
,
num_filters
=
3
,
filter_size
=
2
)
static_ret
=
self
.
get_static_graph_result
(
feed
=
{
'pixel'
:
np
.
ones
(
[
2
,
3
,
6
,
6
,
6
],
dtype
=
'float32'
)},
fetch_list
=
[
ret
])[
0
]
with
self
.
static_graph
():
images
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
6
,
6
,
6
],
dtype
=
'float32'
)
conv3d
=
nn
.
Conv3D
(
'conv3d'
,
num_filters
=
3
,
filter_size
=
2
)
ret
=
conv3d
(
images
)
static_ret2
=
self
.
get_static_graph_result
(
feed
=
{
'pixel'
:
np
.
ones
(
[
2
,
3
,
6
,
6
,
6
],
dtype
=
'float32'
)},
fetch_list
=
[
ret
])[
0
]
with
self
.
dynamic_graph
():
images
=
np
.
ones
([
2
,
3
,
6
,
6
,
6
],
dtype
=
'float32'
)
conv3d
=
nn
.
Conv3D
(
'conv3d'
,
num_filters
=
3
,
filter_size
=
2
)
dy_ret
=
conv3d
(
base
.
to_variable
(
images
))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
dy_ret
.
_numpy
()))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
static_ret2
))
def
test_row_conv
(
self
):
input
=
np
.
arange
(
15
).
reshape
([
3
,
5
]).
astype
(
'float32'
)
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
else
:
place
=
core
.
CPUPlace
()
with
self
.
static_graph
():
x
=
layers
.
data
(
name
=
'X'
,
shape
=
[
3
,
5
],
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
ret
=
layers
.
row_conv
(
input
=
x
,
future_context_size
=
2
)
static_ret
=
self
.
get_static_graph_result
(
feed
=
{
'X'
:
fluid
.
create_lod_tensor
(
data
=
input
,
recursive_seq_lens
=
[[
1
,
1
,
1
]],
place
=
place
)
},
fetch_list
=
[
ret
],
with_lod
=
True
)[
0
]
with
self
.
static_graph
():
x
=
layers
.
data
(
name
=
'X'
,
shape
=
[
3
,
5
],
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
rowConv
=
nn
.
RowConv
(
'RowConv'
,
future_context_size
=
2
)
ret
=
rowConv
(
x
)
static_ret2
=
self
.
get_static_graph_result
(
feed
=
{
'X'
:
fluid
.
create_lod_tensor
(
data
=
input
,
recursive_seq_lens
=
[[
1
,
1
,
1
]],
place
=
place
)
},
fetch_list
=
[
ret
],
with_lod
=
True
)[
0
]
# TODO: dygraph can't support LODTensor
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
static_ret2
))
def
test_group_norm
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
else
:
place
=
core
.
CPUPlace
()
shape
=
(
2
,
4
,
3
,
3
)
input
=
np
.
random
.
random
(
shape
).
astype
(
'float32'
)
with
self
.
static_graph
():
X
=
fluid
.
layers
.
data
(
name
=
'X'
,
shape
=
shape
,
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
ret
=
layers
.
group_norm
(
input
=
X
,
groups
=
2
)
static_ret
=
self
.
get_static_graph_result
(
feed
=
{
'X'
:
fluid
.
create_lod_tensor
(
data
=
input
,
recursive_seq_lens
=
[[
1
,
1
]],
place
=
place
)
},
fetch_list
=
[
ret
],
with_lod
=
True
)[
0
]
with
self
.
static_graph
():
X
=
fluid
.
layers
.
data
(
name
=
'X'
,
shape
=
shape
,
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
groupNorm
=
nn
.
GroupNorm
(
'GroupNorm'
,
groups
=
2
)
ret
=
groupNorm
(
X
)
static_ret2
=
self
.
get_static_graph_result
(
feed
=
{
'X'
:
fluid
.
create_lod_tensor
(
data
=
input
,
recursive_seq_lens
=
[[
1
,
1
]],
place
=
place
)
},
fetch_list
=
[
ret
],
with_lod
=
True
)[
0
]
with
self
.
dynamic_graph
():
groupNorm
=
nn
.
GroupNorm
(
'GroupNorm'
,
groups
=
2
)
dy_ret
=
groupNorm
(
base
.
to_variable
(
input
))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
dy_ret
.
_numpy
()))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
static_ret2
))
def
test_spectral_norm
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
else
:
place
=
core
.
CPUPlace
()
shape
=
(
2
,
4
,
3
,
3
)
input
=
np
.
random
.
random
(
shape
).
astype
(
'float32'
)
with
self
.
static_graph
():
Weight
=
fluid
.
layers
.
data
(
name
=
'Weight'
,
shape
=
shape
,
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
ret
=
layers
.
spectral_norm
(
weight
=
Weight
,
dim
=
1
,
power_iters
=
2
)
static_ret
=
self
.
get_static_graph_result
(
feed
=
{
'Weight'
:
fluid
.
create_lod_tensor
(
data
=
input
,
recursive_seq_lens
=
[[
1
,
1
]],
place
=
place
),
},
fetch_list
=
[
ret
],
with_lod
=
True
)[
0
]
with
self
.
static_graph
():
Weight
=
fluid
.
layers
.
data
(
name
=
'Weight'
,
shape
=
shape
,
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
spectralNorm
=
nn
.
SpectralNorm
(
'SpectralNorm'
,
dim
=
1
,
power_iters
=
2
)
ret
=
spectralNorm
(
Weight
)
static_ret2
=
self
.
get_static_graph_result
(
feed
=
{
'Weight'
:
fluid
.
create_lod_tensor
(
data
=
input
,
recursive_seq_lens
=
[[
1
,
1
]],
place
=
place
)
},
fetch_list
=
[
ret
],
with_lod
=
True
)[
0
]
with
self
.
dynamic_graph
():
spectralNorm
=
nn
.
SpectralNorm
(
'SpectralNorm'
,
dim
=
1
,
power_iters
=
2
)
dy_ret
=
spectralNorm
(
base
.
to_variable
(
input
))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
dy_ret
.
_numpy
()))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
static_ret2
))
def
test_tree_conv
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
else
:
place
=
core
.
CPUPlace
()
adj_array
=
[
1
,
2
,
1
,
3
,
1
,
4
,
1
,
5
,
2
,
6
,
2
,
7
,
2
,
8
,
4
,
9
,
4
,
10
]
adj
=
np
.
array
(
adj_array
).
reshape
((
1
,
9
,
2
)).
astype
(
'int32'
)
adj
=
np
.
tile
(
adj
,
(
1
,
1
,
1
))
vectors
=
np
.
random
.
random
((
1
,
10
,
5
)).
astype
(
'float32'
)
with
self
.
static_graph
():
NodesVector
=
fluid
.
layers
.
data
(
name
=
'NodesVector'
,
shape
=
(
1
,
10
,
5
),
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
EdgeSet
=
fluid
.
layers
.
data
(
name
=
'EdgeSet'
,
shape
=
(
1
,
9
,
2
),
dtype
=
'int32'
,
lod_level
=
1
,
append_batch_size
=
False
)
ret
=
layers
.
tree_conv
(
nodes_vector
=
NodesVector
,
edge_set
=
EdgeSet
,
output_size
=
6
,
num_filters
=
1
,
max_depth
=
2
)
static_ret
=
self
.
get_static_graph_result
(
feed
=
{
'NodesVector'
:
fluid
.
create_lod_tensor
(
data
=
vectors
,
recursive_seq_lens
=
[[
1
]],
place
=
place
),
'EdgeSet'
:
fluid
.
create_lod_tensor
(
data
=
adj
,
recursive_seq_lens
=
[[
1
]],
place
=
place
)
},
fetch_list
=
[
ret
],
with_lod
=
False
)[
0
]
with
self
.
static_graph
():
NodesVector
=
fluid
.
layers
.
data
(
name
=
'NodesVector'
,
shape
=
(
1
,
10
,
5
),
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
EdgeSet
=
fluid
.
layers
.
data
(
name
=
'EdgeSet'
,
shape
=
(
1
,
9
,
2
),
dtype
=
'int32'
,
lod_level
=
1
,
append_batch_size
=
False
)
treeConv
=
nn
.
TreeConv
(
'TreeConv'
,
output_size
=
6
,
num_filters
=
1
,
max_depth
=
2
)
ret
=
treeConv
(
NodesVector
,
EdgeSet
)
static_ret2
=
self
.
get_static_graph_result
(
feed
=
{
'NodesVector'
:
fluid
.
create_lod_tensor
(
data
=
vectors
,
recursive_seq_lens
=
[[
1
]],
place
=
place
),
'EdgeSet'
:
fluid
.
create_lod_tensor
(
data
=
adj
,
recursive_seq_lens
=
[[
1
]],
place
=
place
)
},
fetch_list
=
[
ret
],
with_lod
=
False
)[
0
]
with
self
.
dynamic_graph
():
treeConv
=
nn
.
TreeConv
(
'SpectralNorm'
,
output_size
=
6
,
num_filters
=
1
,
max_depth
=
2
)
dy_ret
=
treeConv
(
base
.
to_variable
(
vectors
),
base
.
to_variable
(
adj
))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
static_ret2
))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
dy_ret
.
_numpy
()))
def
test_conv3d_transpose
(
self
):
input_array
=
np
.
arange
(
0
,
48
).
reshape
(
[
2
,
3
,
2
,
2
,
2
]).
astype
(
'float32'
)
with
self
.
static_graph
():
img
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
2
,
2
,
2
],
dtype
=
'float32'
)
out
=
layers
.
conv3d_transpose
(
input
=
img
,
num_filters
=
12
,
filter_size
=
12
,
use_cudnn
=
False
)
static_rlt
=
self
.
get_static_graph_result
(
feed
=
{
'pixel'
:
input_array
},
fetch_list
=
[
out
])[
0
]
with
self
.
static_graph
():
img
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
2
,
2
,
2
],
dtype
=
'float32'
)
conv3d_transpose
=
nn
.
Conv3DTranspose
(
'Conv3DTranspose'
,
num_filters
=
12
,
filter_size
=
12
,
use_cudnn
=
False
)
out
=
conv3d_transpose
(
img
)
static_rlt2
=
self
.
get_static_graph_result
(
feed
=
{
'pixel'
:
input_array
},
fetch_list
=
[
out
])[
0
]
with
self
.
dynamic_graph
():
conv3d_transpose
=
nn
.
Conv3DTranspose
(
'Conv3DTranspose'
,
num_filters
=
12
,
filter_size
=
12
,
use_cudnn
=
False
)
dy_rlt
=
conv3d_transpose
(
base
.
to_variable
(
input_array
))
self
.
assertTrue
(
np
.
allclose
(
static_rlt2
,
static_rlt
))
self
.
assertTrue
(
np
.
allclose
(
dy_rlt
.
_numpy
(),
static_rlt
))
class
TestBook
(
unittest
.
TestCase
):
def
test_fit_a_line
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录