Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
463f88a7
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
463f88a7
编写于
4月 11, 2019
作者:
L
lujun
提交者:
GitHub
4月 11, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #16672 from junjun315/cherry-pick-move-nn
cherry-pick 16520, add NN and utest
上级
ed0f1ae4
b90c08c3
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
816 addition
and
9 deletion
+816
-9
python/paddle/fluid/dygraph/nn.py
python/paddle/fluid/dygraph/nn.py
+540
-8
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+2
-1
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+274
-0
未找到文件。
python/paddle/fluid/dygraph/nn.py
浏览文件 @
463f88a7
...
...
@@ -15,19 +15,20 @@
from
__future__
import
print_function
from
six.moves
import
reduce
import
numpy
as
np
from
..
import
core
from
..layers
import
utils
from
.
import
layers
from
..framework
import
Variable
,
OpProtoHolder
,
Parameter
from
..layers
import
layer_function_generator
from
..framework
import
Variable
,
_in_dygraph_mode
,
OpProtoHolder
,
Parameter
from
..param_attr
import
ParamAttr
from
..initializer
import
Normal
,
Constant
,
NumpyArrayInitializer
import
numpy
as
np
__all__
=
[
'Conv2D'
,
'Pool2D'
,
'FC'
,
'BatchNorm'
,
'Embedding'
,
'GRUUnit'
,
'LayerNorm'
,
'NCE'
,
'PRelu'
,
'BilinearTensorProduct'
,
'Conv2DTranspose'
,
'SequenceConv'
'Conv2D'
,
'Conv3D'
,
'Pool2D'
,
'FC'
,
'BatchNorm'
,
'Embedding'
,
'GRUUnit'
,
'LayerNorm'
,
'NCE'
,
'PRelu'
,
'BilinearTensorProduct'
,
'Conv2DTranspose'
,
'Conv3DTranspose'
,
'SequenceConv'
,
'RowConv'
,
'GroupNorm'
,
'SpectralNorm'
,
'TreeConv'
]
...
...
@@ -137,6 +138,303 @@ class Conv2D(layers.Layer):
return
self
.
_helper
.
append_activation
(
pre_act
,
act
=
self
.
_act
)
class
Conv3D
(
layers
.
Layer
):
"""
**Convlution3D Layer**
The convolution3D layer calculates the output based on the input, filter
and strides, paddings, dilations, groups parameters. Input(Input) and
Output(Output) are in NCDHW format. Where N is batch size C is the number of
channels, D is the depth of the feature, H is the height of the feature,
and W is the width of the feature. Convlution3D is similar with Convlution2D
but adds one dimension(depth). If bias attribution and activation type are
provided, bias is added to the output of the convolution, and the
corresponding activation function is applied to the final result.
For each input :math:`X`, the equation is:
.. math::
Out = \sigma (W
\\
ast X + b)
In the above equation:
* :math:`X`: Input value, a tensor with NCDHW format.
* :math:`W`: Filter value, a tensor with MCDHW format.
* :math:`
\\
ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
* :math:`
\\
sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example:
- Input:
Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`
- Output:
Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
Where
.. math::
D_{out}&=
\\
frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1
\\\\
H_{out}&=
\\
frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1
\\\\
W_{out}&=
\\
frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1
Args:
input (Variable): The input image with [N, C, D, H, W] format.
num_filters(int): The number of filter. It is as same as the output
image channel.
filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
Otherwise, the filter will be a square.
stride (int|tuple): The stride size. If stride is a tuple, it must
contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
stride_D = stride_H = stride_W = stride. Default: stride = 1.
padding (int|tuple): The padding size. If padding is a tuple, it must
contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
padding_D = padding_H = padding_W = padding. Default: padding = 0.
dilation (int|tuple): The dilation size. If dilation is a tuple, it must
contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
groups (int): The groups number of the Conv3d Layer. According to grouped
convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
the first half of the filters is only connected to the first half
of the input channels, while the second half of the filters is only
connected to the second half of the input channels. Default: groups=1
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
will create ParamAttr as param_attr. If it is set to None, the parameter
is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
:math:`(
\\
frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv3d
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True
act (str): Activation type, if it is set to None, activation is not appended.
Default: None.
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: None.
Returns:
Variable: The tensor variable storing the convolution and
\
non-linearity activation result.
Raises:
ValueError: If the shapes of input, filter_size, stride, padding and
groups mismatch.
Examples:
.. code-block:: python
data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
"""
def
__init__
(
self
,
name_scope
,
num_filters
,
filter_size
,
stride
=
1
,
padding
=
0
,
dilation
=
1
,
groups
=
None
,
param_attr
=
None
,
bias_attr
=
None
,
use_cudnn
=
True
,
act
=
None
):
assert
param_attr
is
not
False
,
"param_attr should not be False here."
super
(
Conv3D
,
self
).
__init__
(
name_scope
)
self
.
_groups
=
groups
self
.
_stride
=
utils
.
convert_to_list
(
stride
,
3
,
'stride'
)
self
.
_padding
=
utils
.
convert_to_list
(
padding
,
3
,
'padding'
)
self
.
_dilation
=
utils
.
convert_to_list
(
dilation
,
3
,
'dilation'
)
self
.
_act
=
act
if
not
isinstance
(
use_cudnn
,
bool
):
raise
ValueError
(
"use_cudnn should be True or False"
)
self
.
_use_cudnn
=
use_cudnn
self
.
_filter_size
=
filter_size
self
.
_num_filters
=
num_filters
self
.
_param_attr
=
param_attr
self
.
_bias_attr
=
bias_attr
def
_build_once
(
self
,
input
):
num_channels
=
input
.
shape
[
1
]
self
.
_dtype
=
self
.
_helper
.
input_dtype
(
input
)
if
self
.
_groups
is
None
:
num_filter_channels
=
num_channels
else
:
if
num_channels
%
self
.
_groups
!=
0
:
raise
ValueError
(
"num_channels must be divisible by groups."
)
num_filter_channels
=
num_channels
//
self
.
_groups
filter_size
=
utils
.
convert_to_list
(
self
.
_filter_size
,
3
,
'filter_size'
)
filter_shape
=
[
self
.
_num_filters
,
num_filter_channels
]
+
filter_size
def
_get_default_param_initializer
():
filter_elem_num
=
filter_size
[
0
]
*
filter_size
[
1
]
*
filter_size
[
2
]
*
num_channels
std
=
(
2.0
/
filter_elem_num
)
**
0.5
return
Normal
(
0.0
,
std
,
0
)
self
.
_filter_param
=
self
.
create_parameter
(
attr
=
self
.
_param_attr
,
shape
=
filter_shape
,
dtype
=
self
.
_dtype
,
default_initializer
=
_get_default_param_initializer
())
self
.
_bias_param
=
self
.
create_parameter
(
attr
=
self
.
_bias_attr
,
shape
=
[
self
.
_num_filters
],
dtype
=
self
.
_dtype
,
is_bias
=
True
)
def
forward
(
self
,
input
):
pre_bias
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
'conv3d'
,
inputs
=
{
'Input'
:
input
,
'Filter'
:
self
.
_filter_param
,
},
outputs
=
{
"Output"
:
pre_bias
},
attrs
=
{
'strides'
:
self
.
_stride
,
'paddings'
:
self
.
_padding
,
'dilations'
:
self
.
_dilation
,
'groups'
:
self
.
_groups
if
self
.
_groups
else
1
,
'use_cudnn'
:
self
.
_use_cudnn
,
'use_mkldnn'
:
False
})
pre_act
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
'elementwise_add'
,
inputs
=
{
'X'
:
[
pre_bias
],
'Y'
:
[
self
.
_bias_param
]},
outputs
=
{
'Out'
:
[
pre_act
]},
attrs
=
{
'axis'
:
1
})
return
self
.
_helper
.
append_activation
(
pre_act
,
act
=
self
.
_act
)
class
Conv3DTranspose
(
layers
.
Layer
):
def
__init__
(
self
,
name_scope
,
num_filters
,
output_size
=
None
,
filter_size
=
None
,
padding
=
0
,
stride
=
1
,
dilation
=
1
,
groups
=
None
,
param_attr
=
None
,
bias_attr
=
None
,
use_cudnn
=
True
,
act
=
None
,
name
=
None
):
super
(
Conv3DTranspose
,
self
).
__init__
(
name_scope
)
if
not
isinstance
(
use_cudnn
,
bool
):
raise
ValueError
(
"use_cudnn should be True or False"
)
assert
param_attr
is
not
False
,
"param_attr should not be False in conv3d_transpose."
self
.
_padding
=
utils
.
convert_to_list
(
padding
,
3
,
'padding'
)
self
.
_stride
=
utils
.
convert_to_list
(
stride
,
3
,
'stride'
)
self
.
_dilation
=
utils
.
convert_to_list
(
dilation
,
3
,
'dilation'
)
self
.
_param_attr
=
param_attr
self
.
_filter_size
=
filter_size
self
.
_output_size
=
output_size
self
.
_groups
=
1
if
groups
is
None
else
groups
self
.
_num_filters
=
num_filters
self
.
_use_cudnn
=
use_cudnn
self
.
_bias_attr
=
bias_attr
self
.
_act
=
act
def
_build_once
(
self
,
input
):
self
.
_dtype
=
self
.
_helper
.
input_dtype
(
input
)
self
.
_input_channel
=
input
.
shape
[
1
]
if
self
.
_filter_size
is
None
:
if
self
.
_output_size
is
None
:
raise
ValueError
(
"output_size must be set when filter_size is None"
)
if
isinstance
(
self
.
_output_size
,
int
):
self
.
_output_size
=
[
self
.
_output_size
,
self
.
_output_size
]
d_in
=
input
.
shape
[
2
]
h_in
=
input
.
shape
[
3
]
w_in
=
input
.
shape
[
4
]
filter_size_d
=
(
self
.
_output_size
[
0
]
-
(
d_in
-
1
)
*
self
.
_stride
[
0
]
+
2
*
self
.
_padding
[
0
]
-
1
)
//
self
.
_dilation
[
0
]
+
1
filter_size_h
=
(
self
.
_output_size
[
1
]
-
(
h_in
-
1
)
*
self
.
_stride
[
1
]
+
2
*
self
.
_padding
[
1
]
-
1
)
//
self
.
_dilation
[
1
]
+
1
filter_size_w
=
(
self
.
_output_size
[
2
]
-
(
w_in
-
1
)
*
self
.
_stride
[
2
]
+
2
*
self
.
_padding
[
2
]
-
1
)
//
self
.
_dilation
[
2
]
+
1
self
.
_filter_size
=
[
filter_size_d
,
filter_size_h
,
filter_size_w
]
else
:
self
.
_filter_size
=
utils
.
convert_to_list
(
self
.
_filter_size
,
3
,
'conv3d_transpose.filter_size'
)
filter_shape
=
[
self
.
_input_channel
,
self
.
_num_filters
//
self
.
_groups
]
+
self
.
_filter_size
self
.
_img_filter
=
self
.
create_parameter
(
dtype
=
self
.
_dtype
,
shape
=
filter_shape
,
attr
=
self
.
_param_attr
)
if
self
.
_bias_attr
:
self
.
_bias_param
=
self
.
create_parameter
(
attr
=
self
.
_bias_attr
,
shape
=
[
self
.
_num_filters
],
dtype
=
self
.
_dtype
,
is_bias
=
True
)
def
forward
(
self
,
input
):
pre_bias
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
"conv3d_transpose"
,
inputs
=
{
'Input'
:
[
input
],
'Filter'
:
[
self
.
_img_filter
]},
outputs
=
{
'Output'
:
pre_bias
},
attrs
=
{
'strides'
:
self
.
_stride
,
'paddings'
:
self
.
_padding
,
'dilations'
:
self
.
_dilation
,
'groups'
:
self
.
_groups
if
self
.
_groups
else
1
,
'use_cudnn'
:
self
.
_use_cudnn
})
if
self
.
_bias_attr
:
pre_act
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
'elementwise_add'
,
inputs
=
{
'X'
:
[
pre_bias
],
'Y'
:
[
self
.
_bias_param
]},
outputs
=
{
'Out'
:
[
pre_act
]},
attrs
=
{
'axis'
:
1
})
else
:
pre_act
=
pre_bias
# Currently, we don't support inplace in imperative mode
return
self
.
_helper
.
append_activation
(
pre_act
,
act
=
self
.
_act
)
class
Pool2D
(
layers
.
Layer
):
def
__init__
(
self
,
name_scope
,
...
...
@@ -1388,6 +1686,8 @@ class SequenceConv(layers.Layer):
bias_attr
=
None
,
param_attr
=
None
,
act
=
None
):
assert
not
_in_dygraph_mode
(
),
"SequenceConv is not supported by dynamic graph mode yet!"
super
(
SequenceConv
,
self
).
__init__
(
name_scope
)
self
.
_num_filters
=
num_filters
self
.
_filter_size
=
filter_size
...
...
@@ -1397,12 +1697,10 @@ class SequenceConv(layers.Layer):
self
.
_param_attr
=
param_attr
def
_build_once
(
self
,
input
):
self
.
_dtype
=
self
.
_helper
.
input_dtype
(
input
)
print
(
self
.
_filter_size
)
filter_shape
=
[
self
.
_filter_size
*
input
.
shape
[
1
],
self
.
_num_filters
]
self
.
_filter_param
=
self
.
create_parameter
(
attr
=
self
.
param_attr
,
shape
=
filter_shape
,
dtype
=
self
.
_dtype
)
attr
=
self
.
_
param_attr
,
shape
=
filter_shape
,
dtype
=
self
.
_dtype
)
def
forward
(
self
,
input
):
pre_bias
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
...
...
@@ -1420,3 +1718,237 @@ class SequenceConv(layers.Layer):
})
pre_act
=
self
.
_helper
.
append_bias_op
(
pre_bias
)
return
self
.
_helper
.
append_activation
(
pre_act
)
class
RowConv
(
layers
.
Layer
):
def
__init__
(
self
,
name_scope
,
future_context_size
,
param_attr
=
None
,
act
=
None
):
assert
not
_in_dygraph_mode
(
),
"RowConv is not supported by dynamic graph mode yet!"
super
(
RowConv
,
self
).
__init__
(
name_scope
)
self
.
_act
=
act
self
.
_param_attr
=
param_attr
self
.
_future_context_size
=
future_context_size
def
_build_once
(
self
,
input
):
self
.
_dtype
=
self
.
_helper
.
input_dtype
(
input
)
filter_shape
=
[
self
.
_future_context_size
+
1
,
input
.
shape
[
1
]]
self
.
_filter_param
=
self
.
create_parameter
(
attr
=
self
.
_param_attr
,
shape
=
filter_shape
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)
def
forward
(
self
,
input
):
out
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
'row_conv'
,
inputs
=
{
'X'
:
[
input
],
'Filter'
:
[
self
.
_filter_param
]},
outputs
=
{
'Out'
:
[
out
]})
return
self
.
_helper
.
append_activation
(
out
,
act
=
self
.
_act
)
class
GroupNorm
(
layers
.
Layer
):
"""
**Group Normalization Layer**
Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
Args:
name_scope (str): See base class.
groups(int): The number of groups that divided from channels.
epsilon(float): The small value added to the variance to prevent
division by zero.
param_attr(ParamAttr|None): The parameter attribute for the learnable
scale :math:`g`. If it is set to False, no scale will be added to the output units.
If it is set to None, the bias is initialized one. Default: None.
bias_attr(ParamAttr|None): The parameter attribute for the learnable
bias :math:`b`. If it is set to False, no bias will be added to the output units.
If it is set to None, the bias is initialized zero. Default: None.
act(str): Activation to be applied to the output of group normalizaiton.
data_layout(string|NCHW): Only NCHW is supported.
dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Returns:
Variable: A tensor variable which is the result after applying group normalization on the input.
"""
def
__init__
(
self
,
name_scope
,
groups
,
epsilon
=
1e-05
,
param_attr
=
None
,
bias_attr
=
None
,
act
=
None
,
data_layout
=
'NCHW'
):
super
(
GroupNorm
,
self
).
__init__
(
name_scope
)
self
.
_param_attr
=
param_attr
self
.
_bias_attr
=
bias_attr
self
.
_epsilon
=
epsilon
self
.
_groups
=
groups
self
.
_act
=
act
if
data_layout
!=
'NCHW'
:
raise
ValueError
(
"unsupported data layout:"
+
data_layout
)
def
_build_once
(
self
,
input
):
self
.
_dtype
=
self
.
_helper
.
input_dtype
(
input
)
param_shape
=
[
input
.
shape
[
1
]]
if
self
.
_bias_attr
:
self
.
_bias
=
self
.
create_parameter
(
attr
=
self
.
_bias_attr
,
shape
=
param_shape
,
dtype
=
self
.
_dtype
,
is_bias
=
True
)
if
self
.
_param_attr
:
self
.
_scale
=
self
.
create_parameter
(
attr
=
self
.
_param_attr
,
shape
=
param_shape
,
dtype
=
self
.
_dtype
,
default_initializer
=
Constant
(
1.0
))
def
forward
(
self
,
input
):
inputs
=
{
'X'
:
input
}
if
self
.
_bias
:
inputs
[
'Bias'
]
=
self
.
_bias
if
self
.
_scale
:
inputs
[
'Scale'
]
=
self
.
_scale
# create output
mean_out
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
,
stop_gradient
=
True
)
variance_out
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
,
stop_gradient
=
True
)
group_norm_out
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
"group_norm"
,
inputs
=
inputs
,
outputs
=
{
"Y"
:
group_norm_out
,
"Mean"
:
mean_out
,
"Variance"
:
variance_out
,
},
attrs
=
{
"epsilon"
:
self
.
_epsilon
,
"groups"
:
self
.
_groups
})
return
self
.
_helper
.
append_activation
(
group_norm_out
,
self
.
_act
)
class
SpectralNorm
(
layers
.
Layer
):
def
__init__
(
self
,
name_scope
,
dim
=
0
,
power_iters
=
1
,
eps
=
1e-12
,
name
=
None
):
super
(
SpectralNorm
,
self
).
__init__
(
name_scope
)
self
.
_power_iters
=
power_iters
self
.
_eps
=
eps
self
.
_dim
=
dim
def
_build_once
(
self
,
weight
):
self
.
_dtype
=
self
.
_helper
.
input_dtype
(
weight
)
input_shape
=
weight
.
shape
h
=
input_shape
[
self
.
_dim
]
w
=
np
.
prod
(
input_shape
)
//
h
self
.
u
=
self
.
create_parameter
(
attr
=
ParamAttr
(),
shape
=
[
h
],
dtype
=
self
.
_dtype
,
default_initializer
=
Normal
(
0.
,
1.
))
self
.
u
.
stop_gradient
=
True
self
.
v
=
self
.
create_parameter
(
attr
=
ParamAttr
(),
shape
=
[
w
],
dtype
=
self
.
_dtype
,
default_initializer
=
Normal
(
0.
,
1.
))
self
.
v
.
stop_gradient
=
True
def
forward
(
self
,
weight
):
inputs
=
{
'Weight'
:
weight
,
'U'
:
self
.
u
,
'V'
:
self
.
v
}
out
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
"spectral_norm"
,
inputs
=
inputs
,
outputs
=
{
"Out"
:
out
,
},
attrs
=
{
"dim"
:
self
.
_dim
,
"power_iters"
:
self
.
_power_iters
,
"eps"
:
self
.
_eps
,
})
return
out
class
TreeConv
(
layers
.
Layer
):
def
__init__
(
self
,
name_scope
,
output_size
,
num_filters
=
1
,
max_depth
=
2
,
act
=
'tanh'
,
param_attr
=
None
,
bias_attr
=
None
,
name
=
None
):
super
(
TreeConv
,
self
).
__init__
(
name_scope
)
self
.
_name
=
name
self
.
_output_size
=
output_size
self
.
_act
=
act
self
.
_max_depth
=
max_depth
self
.
_num_filters
=
num_filters
self
.
_bias_attr
=
bias_attr
self
.
_param_attr
=
param_attr
def
_build_once
(
self
,
nodes_vector
,
edge_set
):
assert
isinstance
(
nodes_vector
,
Variable
)
assert
isinstance
(
edge_set
,
Variable
)
self
.
_dtype
=
self
.
_helper
.
input_dtype
(
nodes_vector
)
feature_size
=
nodes_vector
.
shape
[
2
]
w_shape
=
[
feature_size
,
3
,
self
.
_output_size
,
self
.
_num_filters
]
if
self
.
_bias_attr
:
self
.
_bias_param
=
self
.
create_parameter
(
attr
=
self
.
_bias_attr
,
shape
=
[
self
.
_num_filters
],
dtype
=
self
.
_dtype
,
is_bias
=
True
)
self
.
W
=
self
.
create_parameter
(
attr
=
self
.
_param_attr
,
shape
=
w_shape
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)
def
forward
(
self
,
nodes_vector
,
edge_set
):
if
self
.
_name
:
out
=
self
.
create_variable
(
name
=
self
.
_name
,
dtype
=
self
.
_dtype
,
persistable
=
False
)
else
:
out
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
'tree_conv'
,
inputs
=
{
'NodesVector'
:
nodes_vector
,
'EdgeSet'
:
edge_set
,
'Filter'
:
self
.
W
},
outputs
=
{
'Out'
:
out
,
},
attrs
=
{
'max_depth'
:
self
.
_max_depth
})
if
self
.
_bias_attr
:
pre_activation
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
'elementwise_add'
,
inputs
=
{
'X'
:
[
out
],
'Y'
:
[
self
.
_bias_param
]},
outputs
=
{
'Out'
:
[
pre_activation
]},
attrs
=
{
'axis'
:
1
})
else
:
pre_activation
=
out
return
self
.
_helper
.
append_activation
(
pre_activation
,
act
=
self
.
_act
)
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
463f88a7
...
...
@@ -80,6 +80,7 @@ list(REMOVE_ITEM TEST_OPS test_nearest_interp_op)
list
(
REMOVE_ITEM TEST_OPS test_imperative_resnet
)
list
(
REMOVE_ITEM TEST_OPS test_imperative_mnist
)
list
(
REMOVE_ITEM TEST_OPS test_ir_memory_optimize_transformer
)
list
(
REMOVE_ITEM TEST_OPS test_layers
)
foreach
(
TEST_OP
${
TEST_OPS
}
)
py_test_modules
(
${
TEST_OP
}
MODULES
${
TEST_OP
}
)
endforeach
(
TEST_OP
)
...
...
@@ -114,7 +115,7 @@ py_test_modules(test_parallel_executor_crf MODULES test_parallel_executor_crf SE
py_test_modules
(
test_parallel_executor_fetch_feed MODULES test_parallel_executor_fetch_feed SERIAL
)
set_tests_properties
(
test_parallel_executor_fetch_feed PROPERTIES TIMEOUT 450
)
py_test_modules
(
test_parallel_executor_transformer MODULES test_parallel_executor_transformer SERIAL
)
py_test_modules
(
test_layers MODULES test_layers ENVS FLAGS_cudnn_deterministic=1
)
if
(
NOT WIN32
)
py_test_modules
(
test_ir_memory_optimize_transformer MODULES test_ir_memory_optimize_transformer SERIAL
)
endif
()
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
463f88a7
...
...
@@ -560,6 +560,280 @@ class TestLayer(LayerTest):
self
.
assertTrue
(
np
.
allclose
(
static_rlt2
,
static_rlt
))
self
.
assertTrue
(
np
.
allclose
(
nce_loss3
.
_numpy
(),
static_rlt
))
def
test_conv3d
(
self
):
with
self
.
static_graph
():
images
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
6
,
6
,
6
],
dtype
=
'float32'
)
ret
=
layers
.
conv3d
(
input
=
images
,
num_filters
=
3
,
filter_size
=
2
)
static_ret
=
self
.
get_static_graph_result
(
feed
=
{
'pixel'
:
np
.
ones
(
[
2
,
3
,
6
,
6
,
6
],
dtype
=
'float32'
)},
fetch_list
=
[
ret
])[
0
]
with
self
.
static_graph
():
images
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
6
,
6
,
6
],
dtype
=
'float32'
)
conv3d
=
nn
.
Conv3D
(
'conv3d'
,
num_filters
=
3
,
filter_size
=
2
)
ret
=
conv3d
(
images
)
static_ret2
=
self
.
get_static_graph_result
(
feed
=
{
'pixel'
:
np
.
ones
(
[
2
,
3
,
6
,
6
,
6
],
dtype
=
'float32'
)},
fetch_list
=
[
ret
])[
0
]
with
self
.
dynamic_graph
():
images
=
np
.
ones
([
2
,
3
,
6
,
6
,
6
],
dtype
=
'float32'
)
conv3d
=
nn
.
Conv3D
(
'conv3d'
,
num_filters
=
3
,
filter_size
=
2
)
dy_ret
=
conv3d
(
base
.
to_variable
(
images
))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
dy_ret
.
_numpy
()))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
static_ret2
))
def
test_row_conv
(
self
):
input
=
np
.
arange
(
15
).
reshape
([
3
,
5
]).
astype
(
'float32'
)
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
else
:
place
=
core
.
CPUPlace
()
with
self
.
static_graph
():
x
=
layers
.
data
(
name
=
'X'
,
shape
=
[
3
,
5
],
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
ret
=
layers
.
row_conv
(
input
=
x
,
future_context_size
=
2
)
static_ret
=
self
.
get_static_graph_result
(
feed
=
{
'X'
:
fluid
.
create_lod_tensor
(
data
=
input
,
recursive_seq_lens
=
[[
1
,
1
,
1
]],
place
=
place
)
},
fetch_list
=
[
ret
],
with_lod
=
True
)[
0
]
with
self
.
static_graph
():
x
=
layers
.
data
(
name
=
'X'
,
shape
=
[
3
,
5
],
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
rowConv
=
nn
.
RowConv
(
'RowConv'
,
future_context_size
=
2
)
ret
=
rowConv
(
x
)
static_ret2
=
self
.
get_static_graph_result
(
feed
=
{
'X'
:
fluid
.
create_lod_tensor
(
data
=
input
,
recursive_seq_lens
=
[[
1
,
1
,
1
]],
place
=
place
)
},
fetch_list
=
[
ret
],
with_lod
=
True
)[
0
]
# TODO: dygraph can't support LODTensor
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
static_ret2
))
def
test_group_norm
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
else
:
place
=
core
.
CPUPlace
()
shape
=
(
2
,
4
,
3
,
3
)
input
=
np
.
random
.
random
(
shape
).
astype
(
'float32'
)
with
self
.
static_graph
():
X
=
fluid
.
layers
.
data
(
name
=
'X'
,
shape
=
shape
,
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
ret
=
layers
.
group_norm
(
input
=
X
,
groups
=
2
)
static_ret
=
self
.
get_static_graph_result
(
feed
=
{
'X'
:
fluid
.
create_lod_tensor
(
data
=
input
,
recursive_seq_lens
=
[[
1
,
1
]],
place
=
place
)
},
fetch_list
=
[
ret
],
with_lod
=
True
)[
0
]
with
self
.
static_graph
():
X
=
fluid
.
layers
.
data
(
name
=
'X'
,
shape
=
shape
,
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
groupNorm
=
nn
.
GroupNorm
(
'GroupNorm'
,
groups
=
2
)
ret
=
groupNorm
(
X
)
static_ret2
=
self
.
get_static_graph_result
(
feed
=
{
'X'
:
fluid
.
create_lod_tensor
(
data
=
input
,
recursive_seq_lens
=
[[
1
,
1
]],
place
=
place
)
},
fetch_list
=
[
ret
],
with_lod
=
True
)[
0
]
with
self
.
dynamic_graph
():
groupNorm
=
nn
.
GroupNorm
(
'GroupNorm'
,
groups
=
2
)
dy_ret
=
groupNorm
(
base
.
to_variable
(
input
))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
dy_ret
.
_numpy
()))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
static_ret2
))
def
test_spectral_norm
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
else
:
place
=
core
.
CPUPlace
()
shape
=
(
2
,
4
,
3
,
3
)
input
=
np
.
random
.
random
(
shape
).
astype
(
'float32'
)
with
self
.
static_graph
():
Weight
=
fluid
.
layers
.
data
(
name
=
'Weight'
,
shape
=
shape
,
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
ret
=
layers
.
spectral_norm
(
weight
=
Weight
,
dim
=
1
,
power_iters
=
2
)
static_ret
=
self
.
get_static_graph_result
(
feed
=
{
'Weight'
:
fluid
.
create_lod_tensor
(
data
=
input
,
recursive_seq_lens
=
[[
1
,
1
]],
place
=
place
),
},
fetch_list
=
[
ret
],
with_lod
=
True
)[
0
]
with
self
.
static_graph
():
Weight
=
fluid
.
layers
.
data
(
name
=
'Weight'
,
shape
=
shape
,
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
spectralNorm
=
nn
.
SpectralNorm
(
'SpectralNorm'
,
dim
=
1
,
power_iters
=
2
)
ret
=
spectralNorm
(
Weight
)
static_ret2
=
self
.
get_static_graph_result
(
feed
=
{
'Weight'
:
fluid
.
create_lod_tensor
(
data
=
input
,
recursive_seq_lens
=
[[
1
,
1
]],
place
=
place
)
},
fetch_list
=
[
ret
],
with_lod
=
True
)[
0
]
with
self
.
dynamic_graph
():
spectralNorm
=
nn
.
SpectralNorm
(
'SpectralNorm'
,
dim
=
1
,
power_iters
=
2
)
dy_ret
=
spectralNorm
(
base
.
to_variable
(
input
))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
dy_ret
.
_numpy
()))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
static_ret2
))
def
test_tree_conv
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
else
:
place
=
core
.
CPUPlace
()
adj_array
=
[
1
,
2
,
1
,
3
,
1
,
4
,
1
,
5
,
2
,
6
,
2
,
7
,
2
,
8
,
4
,
9
,
4
,
10
]
adj
=
np
.
array
(
adj_array
).
reshape
((
1
,
9
,
2
)).
astype
(
'int32'
)
adj
=
np
.
tile
(
adj
,
(
1
,
1
,
1
))
vectors
=
np
.
random
.
random
((
1
,
10
,
5
)).
astype
(
'float32'
)
with
self
.
static_graph
():
NodesVector
=
fluid
.
layers
.
data
(
name
=
'NodesVector'
,
shape
=
(
1
,
10
,
5
),
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
EdgeSet
=
fluid
.
layers
.
data
(
name
=
'EdgeSet'
,
shape
=
(
1
,
9
,
2
),
dtype
=
'int32'
,
lod_level
=
1
,
append_batch_size
=
False
)
ret
=
layers
.
tree_conv
(
nodes_vector
=
NodesVector
,
edge_set
=
EdgeSet
,
output_size
=
6
,
num_filters
=
1
,
max_depth
=
2
)
static_ret
=
self
.
get_static_graph_result
(
feed
=
{
'NodesVector'
:
fluid
.
create_lod_tensor
(
data
=
vectors
,
recursive_seq_lens
=
[[
1
]],
place
=
place
),
'EdgeSet'
:
fluid
.
create_lod_tensor
(
data
=
adj
,
recursive_seq_lens
=
[[
1
]],
place
=
place
)
},
fetch_list
=
[
ret
],
with_lod
=
False
)[
0
]
with
self
.
static_graph
():
NodesVector
=
fluid
.
layers
.
data
(
name
=
'NodesVector'
,
shape
=
(
1
,
10
,
5
),
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
EdgeSet
=
fluid
.
layers
.
data
(
name
=
'EdgeSet'
,
shape
=
(
1
,
9
,
2
),
dtype
=
'int32'
,
lod_level
=
1
,
append_batch_size
=
False
)
treeConv
=
nn
.
TreeConv
(
'TreeConv'
,
output_size
=
6
,
num_filters
=
1
,
max_depth
=
2
)
ret
=
treeConv
(
NodesVector
,
EdgeSet
)
static_ret2
=
self
.
get_static_graph_result
(
feed
=
{
'NodesVector'
:
fluid
.
create_lod_tensor
(
data
=
vectors
,
recursive_seq_lens
=
[[
1
]],
place
=
place
),
'EdgeSet'
:
fluid
.
create_lod_tensor
(
data
=
adj
,
recursive_seq_lens
=
[[
1
]],
place
=
place
)
},
fetch_list
=
[
ret
],
with_lod
=
False
)[
0
]
with
self
.
dynamic_graph
():
treeConv
=
nn
.
TreeConv
(
'SpectralNorm'
,
output_size
=
6
,
num_filters
=
1
,
max_depth
=
2
)
dy_ret
=
treeConv
(
base
.
to_variable
(
vectors
),
base
.
to_variable
(
adj
))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
static_ret2
))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
dy_ret
.
_numpy
()))
def
test_conv3d_transpose
(
self
):
input_array
=
np
.
arange
(
0
,
48
).
reshape
(
[
2
,
3
,
2
,
2
,
2
]).
astype
(
'float32'
)
with
self
.
static_graph
():
img
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
2
,
2
,
2
],
dtype
=
'float32'
)
out
=
layers
.
conv3d_transpose
(
input
=
img
,
num_filters
=
12
,
filter_size
=
12
,
use_cudnn
=
False
)
static_rlt
=
self
.
get_static_graph_result
(
feed
=
{
'pixel'
:
input_array
},
fetch_list
=
[
out
])[
0
]
with
self
.
static_graph
():
img
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
2
,
2
,
2
],
dtype
=
'float32'
)
conv3d_transpose
=
nn
.
Conv3DTranspose
(
'Conv3DTranspose'
,
num_filters
=
12
,
filter_size
=
12
,
use_cudnn
=
False
)
out
=
conv3d_transpose
(
img
)
static_rlt2
=
self
.
get_static_graph_result
(
feed
=
{
'pixel'
:
input_array
},
fetch_list
=
[
out
])[
0
]
with
self
.
dynamic_graph
():
conv3d_transpose
=
nn
.
Conv3DTranspose
(
'Conv3DTranspose'
,
num_filters
=
12
,
filter_size
=
12
,
use_cudnn
=
False
)
dy_rlt
=
conv3d_transpose
(
base
.
to_variable
(
input_array
))
self
.
assertTrue
(
np
.
allclose
(
static_rlt2
,
static_rlt
))
self
.
assertTrue
(
np
.
allclose
(
dy_rlt
.
_numpy
(),
static_rlt
))
class
TestBook
(
unittest
.
TestCase
):
def
test_fit_a_line
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录