提交 2b4ef509 编写于 作者: J Jie Fang 提交者: Yibing Liu

init custom black white list (#18377)

test=develop
上级 b9630799
...@@ -426,7 +426,8 @@ paddle.fluid.contrib.HDFSClient.upload (ArgSpec(args=['self', 'hdfs_path', 'loca ...@@ -426,7 +426,8 @@ paddle.fluid.contrib.HDFSClient.upload (ArgSpec(args=['self', 'hdfs_path', 'loca
paddle.fluid.contrib.multi_download (ArgSpec(args=['client', 'hdfs_path', 'local_path', 'trainer_id', 'trainers', 'multi_processes'], varargs=None, keywords=None, defaults=(5,)), ('document', '100927be598ed8f9eaa1f3ef1b23568a')) paddle.fluid.contrib.multi_download (ArgSpec(args=['client', 'hdfs_path', 'local_path', 'trainer_id', 'trainers', 'multi_processes'], varargs=None, keywords=None, defaults=(5,)), ('document', '100927be598ed8f9eaa1f3ef1b23568a'))
paddle.fluid.contrib.multi_upload (ArgSpec(args=['client', 'hdfs_path', 'local_path', 'multi_processes', 'overwrite', 'sync'], varargs=None, keywords=None, defaults=(5, False, True)), ('document', '183f34c83d30dbe16e09e8716c41958a')) paddle.fluid.contrib.multi_upload (ArgSpec(args=['client', 'hdfs_path', 'local_path', 'multi_processes', 'overwrite', 'sync'], varargs=None, keywords=None, defaults=(5, False, True)), ('document', '183f34c83d30dbe16e09e8716c41958a'))
paddle.fluid.contrib.extend_with_decoupled_weight_decay (ArgSpec(args=['base_optimizer'], varargs=None, keywords=None, defaults=None), ('document', 'a1095dfd4ec725747f662d69cd7659d4')) paddle.fluid.contrib.extend_with_decoupled_weight_decay (ArgSpec(args=['base_optimizer'], varargs=None, keywords=None, defaults=None), ('document', 'a1095dfd4ec725747f662d69cd7659d4'))
paddle.fluid.contrib.mixed_precision.decorate (ArgSpec(args=['optimizer', 'init_loss_scaling', 'incr_every_n_steps', 'decr_every_n_nan_or_inf', 'incr_ratio', 'decr_ratio', 'use_dynamic_loss_scaling'], varargs=None, keywords=None, defaults=(1.0, 1000, 2, 2.0, 0.8, False)), ('document', 'bdb8f9dbb0d94b3957272c53eeee9818')) paddle.fluid.contrib.mixed_precision.decorate (ArgSpec(args=['optimizer', 'amp_lists', 'init_loss_scaling', 'incr_every_n_steps', 'decr_every_n_nan_or_inf', 'incr_ratio', 'decr_ratio', 'use_dynamic_loss_scaling'], varargs=None, keywords=None, defaults=(None, 1.0, 1000, 2, 2.0, 0.8, False)), ('document', 'd05e71f5b0bd6d92bb94e70e00b3f9cf'))
paddle.fluid.contrib.mixed_precision.AutoMixedPrecisionLists.__init__ (ArgSpec(args=['self', 'custom_white_list', 'custom_black_list'], varargs=None, keywords=None, defaults=(None, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.fused_elemwise_activation (ArgSpec(args=['x', 'y', 'functor_list', 'axis', 'scale', 'save_intermediate_out'], varargs=None, keywords=None, defaults=(-1, 0.0, True)), ('document', '1c4b247a2858cea8d9d8750693688270')) paddle.fluid.contrib.fused_elemwise_activation (ArgSpec(args=['x', 'y', 'functor_list', 'axis', 'scale', 'save_intermediate_out'], varargs=None, keywords=None, defaults=(-1, 0.0, True)), ('document', '1c4b247a2858cea8d9d8750693688270'))
paddle.fluid.contrib.BasicGRUUnit.__init__ (ArgSpec(args=['self', 'name_scope', 'hidden_size', 'param_attr', 'bias_attr', 'gate_activation', 'activation', 'dtype'], varargs=None, keywords=None, defaults=(None, None, None, None, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.contrib.BasicGRUUnit.__init__ (ArgSpec(args=['self', 'name_scope', 'hidden_size', 'param_attr', 'bias_attr', 'gate_activation', 'activation', 'dtype'], varargs=None, keywords=None, defaults=(None, None, None, None, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.BasicGRUUnit.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1')) paddle.fluid.contrib.BasicGRUUnit.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1'))
......
...@@ -15,5 +15,7 @@ ...@@ -15,5 +15,7 @@
from __future__ import print_function from __future__ import print_function
from . import decorator from . import decorator
from .decorator import * from .decorator import *
from .fp16_lists import AutoMixedPrecisionLists
__all__ = decorator.__all__ __all__ = decorator.__all__
__all__ += fp16_lists.__all__
...@@ -19,6 +19,7 @@ from ... import unique_name ...@@ -19,6 +19,7 @@ from ... import unique_name
from . import fp16_utils from . import fp16_utils
from .fp16_utils import create_master_params_grads, master_param_to_train_param from .fp16_utils import create_master_params_grads, master_param_to_train_param
from .fp16_utils import update_loss_scaling, rewrite_program from .fp16_utils import update_loss_scaling, rewrite_program
from .fp16_lists import AutoMixedPrecisionLists
__all__ = ["decorate"] __all__ = ["decorate"]
...@@ -34,6 +35,7 @@ class OptimizerWithMixedPrecison(object): ...@@ -34,6 +35,7 @@ class OptimizerWithMixedPrecison(object):
Args: Args:
optimizer (Optimizer): A common Optimizer object. optimizer (Optimizer): A common Optimizer object.
amp_lists (AutoMixedPrecisionLists): An AutoMixedPrecisionLists object.
init_loss_scaling (float): The initial loss scaling factor. init_loss_scaling (float): The initial loss scaling factor.
use_dynamic_loss_scaling (bool): Whether to use dynamic loss scaling. use_dynamic_loss_scaling (bool): Whether to use dynamic loss scaling.
incr_every_n_steps(int): Increases loss scaling every n consecutive incr_every_n_steps(int): Increases loss scaling every n consecutive
...@@ -48,10 +50,11 @@ class OptimizerWithMixedPrecison(object): ...@@ -48,10 +50,11 @@ class OptimizerWithMixedPrecison(object):
""" """
def __init__(self, optimizer, init_loss_scaling, use_dynamic_loss_scaling, def __init__(self, optimizer, amp_lists, init_loss_scaling,
incr_every_n_steps, decr_every_n_nan_or_inf, incr_ratio, use_dynamic_loss_scaling, incr_every_n_steps,
decr_ratio): decr_every_n_nan_or_inf, incr_ratio, decr_ratio):
self._optimizer = optimizer self._optimizer = optimizer
self._amp_lists = amp_lists
self._param_grads = None self._param_grads = None
self._train_program = default_main_program() self._train_program = default_main_program()
self._startup_prog = default_startup_program() self._startup_prog = default_startup_program()
...@@ -120,7 +123,7 @@ class OptimizerWithMixedPrecison(object): ...@@ -120,7 +123,7 @@ class OptimizerWithMixedPrecison(object):
A list of (param, grad), which is a tuple of a parameter and its A list of (param, grad), which is a tuple of a parameter and its
gradient respectively, and the scaled loss. gradient respectively, and the scaled loss.
""" """
rewrite_program(self._train_program) rewrite_program(self._train_program, self._amp_lists)
scaled_loss = loss * self._loss_scaling scaled_loss = loss * self._loss_scaling
self._param_grads = self._optimizer.backward( self._param_grads = self._optimizer.backward(
scaled_loss, startup_program, parameter_list, no_grad_set, scaled_loss, startup_program, parameter_list, no_grad_set,
...@@ -189,6 +192,7 @@ class OptimizerWithMixedPrecison(object): ...@@ -189,6 +192,7 @@ class OptimizerWithMixedPrecison(object):
def decorate(optimizer, def decorate(optimizer,
amp_lists=None,
init_loss_scaling=1.0, init_loss_scaling=1.0,
incr_every_n_steps=1000, incr_every_n_steps=1000,
decr_every_n_nan_or_inf=2, decr_every_n_nan_or_inf=2,
...@@ -200,6 +204,7 @@ def decorate(optimizer, ...@@ -200,6 +204,7 @@ def decorate(optimizer,
Args: Args:
optimizer(Optimizer): A common Optimizer. optimizer(Optimizer): A common Optimizer.
amp_lists (AutoMixedPrecisionLists): An AutoMixedPrecisionLists object.
init_loss_scaling(float): The initial loss scaling factor. init_loss_scaling(float): The initial loss scaling factor.
incr_every_n_steps(int): Increases loss scaling every n consecutive incr_every_n_steps(int): Increases loss scaling every n consecutive
steps with finite gradients. steps with finite gradients.
...@@ -227,9 +232,10 @@ def decorate(optimizer, ...@@ -227,9 +232,10 @@ def decorate(optimizer,
scaled_loss, _, _ = mp_optimizer.minimize(loss) scaled_loss, _, _ = mp_optimizer.minimize(loss)
""" """
if amp_lists is None:
amp_lists = AutoMixedPrecisionLists()
mp_optimizer = OptimizerWithMixedPrecison( mp_optimizer = OptimizerWithMixedPrecison(
optimizer, init_loss_scaling, use_dynamic_loss_scaling, optimizer, amp_lists, init_loss_scaling, use_dynamic_loss_scaling,
incr_every_n_steps, decr_every_n_nan_or_inf, incr_ratio, decr_ratio) incr_every_n_steps, decr_every_n_nan_or_inf, incr_ratio, decr_ratio)
return mp_optimizer return mp_optimizer
...@@ -12,6 +12,47 @@ ...@@ -12,6 +12,47 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import copy
__all__ = ["AutoMixedPrecisionLists"]
class AutoMixedPrecisionLists(object):
"""
AutoMixedPrecisionLists is a class for black/white list. It can update
pre-defined black list and white list according to users' custom black
white lists. The lists are used for an algorithm which determines op's
exectuion mode (fp32 or fp16).
Args:
custom_white_list (set): Users' custom white list.
custom_black_list (set): Users' custom black list.
"""
def __init__(self, custom_white_list=None, custom_black_list=None):
self._custom_white_list = custom_white_list
self._custom_black_list = custom_black_list
self.white_list = copy.copy(white_list)
self.black_list = copy.copy(black_list)
self.gray_list = copy.copy(gray_list)
self._update_list()
def _update_list(self):
"""
Update black and white list according to users' custom list.
"""
if self._custom_white_list:
for op_name in self._custom_white_list:
if op_name in self.black_list:
self.black_list.remove(op_name)
self.white_list.add(op_name)
if self._custom_black_list:
for op_name in self._custom_black_list:
if op_name in self.white_list:
self.white_list.remove(op_name)
self.black_list.add(op_name)
# The three sets listed below are changed dynamiclly. They don't contain all # The three sets listed below are changed dynamiclly. They don't contain all
# paddle ops currently. # paddle ops currently.
......
...@@ -17,7 +17,6 @@ from __future__ import print_function ...@@ -17,7 +17,6 @@ from __future__ import print_function
from ... import core from ... import core
from ... import layers from ... import layers
from ... import framework from ... import framework
from .fp16_lists import black_list, white_list, gray_list
def append_cast_op(i, o, prog): def append_cast_op(i, o, prog):
...@@ -218,7 +217,7 @@ def find_true_prev_op(ops, var_name): ...@@ -218,7 +217,7 @@ def find_true_prev_op(ops, var_name):
return op return op
def rewrite_program(main_prog): def rewrite_program(main_prog, amp_lists):
""" """
Traverse all ops in current block and insert cast op according to Traverse all ops in current block and insert cast op according to
which set current op belongs to. which set current op belongs to.
...@@ -244,11 +243,11 @@ def rewrite_program(main_prog): ...@@ -244,11 +243,11 @@ def rewrite_program(main_prog):
black_op_set = set() black_op_set = set()
for i in range(len(ops)): for i in range(len(ops)):
op = ops[i] op = ops[i]
if op.type in black_list: if op.type in amp_lists.black_list:
black_op_set.add(op) black_op_set.add(op)
elif op.type in white_list: elif op.type in amp_lists.white_list:
white_op_set.add(op) white_op_set.add(op)
elif op.type in op.type in gray_list: elif op.type in amp_lists.gray_list:
is_black_op = False is_black_op = False
is_white_op = False is_white_op = False
for in_name in op.input_names: for in_name in op.input_names:
...@@ -265,10 +264,10 @@ def rewrite_program(main_prog): ...@@ -265,10 +264,10 @@ def rewrite_program(main_prog):
prev_op = in_var.op prev_op = in_var.op
# if it's one of inputs # if it's one of inputs
if prev_op in black_op_set or \ if prev_op in black_op_set or \
prev_op.type in black_list: prev_op.type in amp_lists.black_list:
is_black_op = True is_black_op = True
if prev_op in white_op_set or \ if prev_op in white_op_set or \
prev_op.type in white_list: prev_op.type in amp_lists.white_list:
is_white_op = True is_white_op = True
if is_black_op: if is_black_op:
black_op_set.add(op) black_op_set.add(op)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册