提交 2b4ef509 编写于 作者: J Jie Fang 提交者: Yibing Liu

init custom black white list (#18377)

test=develop
上级 b9630799
......@@ -426,7 +426,8 @@ paddle.fluid.contrib.HDFSClient.upload (ArgSpec(args=['self', 'hdfs_path', 'loca
paddle.fluid.contrib.multi_download (ArgSpec(args=['client', 'hdfs_path', 'local_path', 'trainer_id', 'trainers', 'multi_processes'], varargs=None, keywords=None, defaults=(5,)), ('document', '100927be598ed8f9eaa1f3ef1b23568a'))
paddle.fluid.contrib.multi_upload (ArgSpec(args=['client', 'hdfs_path', 'local_path', 'multi_processes', 'overwrite', 'sync'], varargs=None, keywords=None, defaults=(5, False, True)), ('document', '183f34c83d30dbe16e09e8716c41958a'))
paddle.fluid.contrib.extend_with_decoupled_weight_decay (ArgSpec(args=['base_optimizer'], varargs=None, keywords=None, defaults=None), ('document', 'a1095dfd4ec725747f662d69cd7659d4'))
paddle.fluid.contrib.mixed_precision.decorate (ArgSpec(args=['optimizer', 'init_loss_scaling', 'incr_every_n_steps', 'decr_every_n_nan_or_inf', 'incr_ratio', 'decr_ratio', 'use_dynamic_loss_scaling'], varargs=None, keywords=None, defaults=(1.0, 1000, 2, 2.0, 0.8, False)), ('document', 'bdb8f9dbb0d94b3957272c53eeee9818'))
paddle.fluid.contrib.mixed_precision.decorate (ArgSpec(args=['optimizer', 'amp_lists', 'init_loss_scaling', 'incr_every_n_steps', 'decr_every_n_nan_or_inf', 'incr_ratio', 'decr_ratio', 'use_dynamic_loss_scaling'], varargs=None, keywords=None, defaults=(None, 1.0, 1000, 2, 2.0, 0.8, False)), ('document', 'd05e71f5b0bd6d92bb94e70e00b3f9cf'))
paddle.fluid.contrib.mixed_precision.AutoMixedPrecisionLists.__init__ (ArgSpec(args=['self', 'custom_white_list', 'custom_black_list'], varargs=None, keywords=None, defaults=(None, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.fused_elemwise_activation (ArgSpec(args=['x', 'y', 'functor_list', 'axis', 'scale', 'save_intermediate_out'], varargs=None, keywords=None, defaults=(-1, 0.0, True)), ('document', '1c4b247a2858cea8d9d8750693688270'))
paddle.fluid.contrib.BasicGRUUnit.__init__ (ArgSpec(args=['self', 'name_scope', 'hidden_size', 'param_attr', 'bias_attr', 'gate_activation', 'activation', 'dtype'], varargs=None, keywords=None, defaults=(None, None, None, None, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.BasicGRUUnit.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1'))
......
......@@ -15,5 +15,7 @@
from __future__ import print_function
from . import decorator
from .decorator import *
from .fp16_lists import AutoMixedPrecisionLists
__all__ = decorator.__all__
__all__ += fp16_lists.__all__
......@@ -19,6 +19,7 @@ from ... import unique_name
from . import fp16_utils
from .fp16_utils import create_master_params_grads, master_param_to_train_param
from .fp16_utils import update_loss_scaling, rewrite_program
from .fp16_lists import AutoMixedPrecisionLists
__all__ = ["decorate"]
......@@ -34,6 +35,7 @@ class OptimizerWithMixedPrecison(object):
Args:
optimizer (Optimizer): A common Optimizer object.
amp_lists (AutoMixedPrecisionLists): An AutoMixedPrecisionLists object.
init_loss_scaling (float): The initial loss scaling factor.
use_dynamic_loss_scaling (bool): Whether to use dynamic loss scaling.
incr_every_n_steps(int): Increases loss scaling every n consecutive
......@@ -48,10 +50,11 @@ class OptimizerWithMixedPrecison(object):
"""
def __init__(self, optimizer, init_loss_scaling, use_dynamic_loss_scaling,
incr_every_n_steps, decr_every_n_nan_or_inf, incr_ratio,
decr_ratio):
def __init__(self, optimizer, amp_lists, init_loss_scaling,
use_dynamic_loss_scaling, incr_every_n_steps,
decr_every_n_nan_or_inf, incr_ratio, decr_ratio):
self._optimizer = optimizer
self._amp_lists = amp_lists
self._param_grads = None
self._train_program = default_main_program()
self._startup_prog = default_startup_program()
......@@ -120,7 +123,7 @@ class OptimizerWithMixedPrecison(object):
A list of (param, grad), which is a tuple of a parameter and its
gradient respectively, and the scaled loss.
"""
rewrite_program(self._train_program)
rewrite_program(self._train_program, self._amp_lists)
scaled_loss = loss * self._loss_scaling
self._param_grads = self._optimizer.backward(
scaled_loss, startup_program, parameter_list, no_grad_set,
......@@ -189,6 +192,7 @@ class OptimizerWithMixedPrecison(object):
def decorate(optimizer,
amp_lists=None,
init_loss_scaling=1.0,
incr_every_n_steps=1000,
decr_every_n_nan_or_inf=2,
......@@ -200,6 +204,7 @@ def decorate(optimizer,
Args:
optimizer(Optimizer): A common Optimizer.
amp_lists (AutoMixedPrecisionLists): An AutoMixedPrecisionLists object.
init_loss_scaling(float): The initial loss scaling factor.
incr_every_n_steps(int): Increases loss scaling every n consecutive
steps with finite gradients.
......@@ -227,9 +232,10 @@ def decorate(optimizer,
scaled_loss, _, _ = mp_optimizer.minimize(loss)
"""
if amp_lists is None:
amp_lists = AutoMixedPrecisionLists()
mp_optimizer = OptimizerWithMixedPrecison(
optimizer, init_loss_scaling, use_dynamic_loss_scaling,
optimizer, amp_lists, init_loss_scaling, use_dynamic_loss_scaling,
incr_every_n_steps, decr_every_n_nan_or_inf, incr_ratio, decr_ratio)
return mp_optimizer
......@@ -12,6 +12,47 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
__all__ = ["AutoMixedPrecisionLists"]
class AutoMixedPrecisionLists(object):
"""
AutoMixedPrecisionLists is a class for black/white list. It can update
pre-defined black list and white list according to users' custom black
white lists. The lists are used for an algorithm which determines op's
exectuion mode (fp32 or fp16).
Args:
custom_white_list (set): Users' custom white list.
custom_black_list (set): Users' custom black list.
"""
def __init__(self, custom_white_list=None, custom_black_list=None):
self._custom_white_list = custom_white_list
self._custom_black_list = custom_black_list
self.white_list = copy.copy(white_list)
self.black_list = copy.copy(black_list)
self.gray_list = copy.copy(gray_list)
self._update_list()
def _update_list(self):
"""
Update black and white list according to users' custom list.
"""
if self._custom_white_list:
for op_name in self._custom_white_list:
if op_name in self.black_list:
self.black_list.remove(op_name)
self.white_list.add(op_name)
if self._custom_black_list:
for op_name in self._custom_black_list:
if op_name in self.white_list:
self.white_list.remove(op_name)
self.black_list.add(op_name)
# The three sets listed below are changed dynamiclly. They don't contain all
# paddle ops currently.
......
......@@ -17,7 +17,6 @@ from __future__ import print_function
from ... import core
from ... import layers
from ... import framework
from .fp16_lists import black_list, white_list, gray_list
def append_cast_op(i, o, prog):
......@@ -218,7 +217,7 @@ def find_true_prev_op(ops, var_name):
return op
def rewrite_program(main_prog):
def rewrite_program(main_prog, amp_lists):
"""
Traverse all ops in current block and insert cast op according to
which set current op belongs to.
......@@ -244,11 +243,11 @@ def rewrite_program(main_prog):
black_op_set = set()
for i in range(len(ops)):
op = ops[i]
if op.type in black_list:
if op.type in amp_lists.black_list:
black_op_set.add(op)
elif op.type in white_list:
elif op.type in amp_lists.white_list:
white_op_set.add(op)
elif op.type in op.type in gray_list:
elif op.type in amp_lists.gray_list:
is_black_op = False
is_white_op = False
for in_name in op.input_names:
......@@ -265,10 +264,10 @@ def rewrite_program(main_prog):
prev_op = in_var.op
# if it's one of inputs
if prev_op in black_op_set or \
prev_op.type in black_list:
prev_op.type in amp_lists.black_list:
is_black_op = True
if prev_op in white_op_set or \
prev_op.type in white_list:
prev_op.type in amp_lists.white_list:
is_white_op = True
if is_black_op:
black_op_set.add(op)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册