提交 1cd14f66 编写于 作者: F fengjiayi

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into dev_enable_tensor_test

无相关合并请求
...@@ -25,7 +25,7 @@ COPY ./paddle/scripts/docker/root/ /root/ ...@@ -25,7 +25,7 @@ COPY ./paddle/scripts/docker/root/ /root/
RUN apt-get update && \ RUN apt-get update && \
apt-get install -y \ apt-get install -y \
git python-pip python-dev openssh-server bison \ git python-pip python-dev openssh-server bison \
wget unzip tar xz-utils bzip2 gzip coreutils ntp \ wget unzip unrar tar xz-utils bzip2 gzip coreutils ntp \
curl sed grep graphviz libjpeg-dev zlib1g-dev \ curl sed grep graphviz libjpeg-dev zlib1g-dev \
python-numpy python-matplotlib gcc g++ \ python-numpy python-matplotlib gcc g++ \
automake locales clang-format-3.8 swig doxygen cmake \ automake locales clang-format-3.8 swig doxygen cmake \
......
...@@ -14,6 +14,17 @@ RUN apt-get update && \ ...@@ -14,6 +14,17 @@ RUN apt-get update && \
wget curl tar unzip gcc g++ locales clang-format-3.8 swig cmake && \ wget curl tar unzip gcc g++ locales clang-format-3.8 swig cmake && \
apt-get clean -y apt-get clean -y
# Install Go and glide
RUN wget -O go.tgz https://storage.googleapis.com/golang/go1.8.1.linux-amd64.tar.gz && \
tar -C /usr/local -xzf go.tgz && \
mkdir /root/gopath && \
mkdir /root/gopath/bin && \
mkdir /root/gopath/src && \
rm go.tgz
ENV GOROOT=/usr/local/go GOPATH=/root/gopath
# should not be in the same line with GOROOT definition, otherwise docker build could not find GOROOT.
ENV PATH=${PATH}:${GOROOT}/bin:${GOPATH}/bin
# git credential to skip password typing # git credential to skip password typing
RUN git config --global credential.helper store RUN git config --global credential.helper store
......
...@@ -108,6 +108,7 @@ IF("${CMAKE_VERSION}" VERSION_LESS "3.7.0") ...@@ -108,6 +108,7 @@ IF("${CMAKE_VERSION}" VERSION_LESS "3.7.0")
ENDIF() ENDIF()
IF(ANDROID_ABI STREQUAL "arm64-v8a") IF(ANDROID_ABI STREQUAL "arm64-v8a")
SET(ANDROID_TOOLCHAIN_NAME aarch64-linux-android) SET(ANDROID_TOOLCHAIN_NAME aarch64-linux-android)
SET(CMAKE_SYSTEM_PROCESSOR aarch64)
ENDIF() ENDIF()
SET(ANDROID_TOOLCHAIN_PREFIX "${ANDROID_TOOLCHAIN_ROOT}/bin/${ANDROID_TOOLCHAIN_NAME}-") SET(ANDROID_TOOLCHAIN_PREFIX "${ANDROID_TOOLCHAIN_ROOT}/bin/${ANDROID_TOOLCHAIN_NAME}-")
ENDIF() ENDIF()
...@@ -166,7 +167,7 @@ IF("${CMAKE_VERSION}" VERSION_LESS "3.7.0") ...@@ -166,7 +167,7 @@ IF("${CMAKE_VERSION}" VERSION_LESS "3.7.0")
ENDIF() ENDIF()
IF(ANDROID_ABI STREQUAL "arm64-v8a") IF(ANDROID_ABI STREQUAL "arm64-v8a")
LIST(APPEND ANDROID_COMPILER_FLAGS -march=armv8-a) LIST(APPEND ANDROID_COMPILER_FLAGS -march=armv8-a)
ENDIF() ENDIF()
STRING(REPLACE ";" " " ANDROID_COMPILER_FLAGS "${ANDROID_COMPILER_FLAGS}") STRING(REPLACE ";" " " ANDROID_COMPILER_FLAGS "${ANDROID_COMPILER_FLAGS}")
...@@ -193,6 +194,10 @@ ELSE() ...@@ -193,6 +194,10 @@ ELSE()
SET(CMAKE_ANDROID_STANDALONE_TOOLCHAIN ${ANDROID_STANDALONE_TOOLCHAIN}) SET(CMAKE_ANDROID_STANDALONE_TOOLCHAIN ${ANDROID_STANDALONE_TOOLCHAIN})
ENDIF() ENDIF()
SET(CMAKE_ANDROID_ARCH_ABI ${ANDROID_ABI}) SET(CMAKE_ANDROID_ARCH_ABI ${ANDROID_ABI})
SET(CMAKE_ANDROID_ARM_MODE ${ANDROID_ARM_MODE}) IF(ANDROID_ABI MATCHES "^armeabi(-v7a)?$")
SET(CMAKE_ANDROID_ARM_NEON ${ANDROID_ARM_NEON}) SET(CMAKE_ANDROID_ARM_MODE ${ANDROID_ARM_MODE})
IF(ANDROID_ABI STREQUAL "armeabi-v7a")
SET(CMAKE_ANDROID_ARM_NEON ${ANDROID_ARM_NEON})
ENDIF()
ENDIF()
ENDIF() ENDIF()
...@@ -11,6 +11,7 @@ import ( ...@@ -11,6 +11,7 @@ import (
"github.com/namsral/flag" "github.com/namsral/flag"
log "github.com/sirupsen/logrus" log "github.com/sirupsen/logrus"
"github.com/topicai/candy"
"github.com/PaddlePaddle/Paddle/go/master" "github.com/PaddlePaddle/Paddle/go/master"
"github.com/PaddlePaddle/Paddle/go/utils/networkhelper" "github.com/PaddlePaddle/Paddle/go/utils/networkhelper"
...@@ -20,11 +21,18 @@ func main() { ...@@ -20,11 +21,18 @@ func main() {
port := flag.Int("port", 8080, "port of the master server.") port := flag.Int("port", 8080, "port of the master server.")
ttlSec := flag.Int("ttl", 60, "etcd lease TTL in seconds.") ttlSec := flag.Int("ttl", 60, "etcd lease TTL in seconds.")
endpoints := flag.String("endpoints", "http://127.0.0.1:2379", "comma separated etcd endpoints. If empty, fault tolerance will not be enabled.") endpoints := flag.String("endpoints", "http://127.0.0.1:2379", "comma separated etcd endpoints. If empty, fault tolerance will not be enabled.")
taskTimeoutDur := flag.Duration("task_timout_dur", 20*time.Minute, "task timout duration.") taskTimeoutDur := flag.Duration("task-timout-dur", 20*time.Minute, "task timout duration.")
taskTimeoutMax := flag.Int("task_timeout_max", 3, "max timtout count for each task before it being declared failed task.") taskTimeoutMax := flag.Int("task-timeout-max", 3, "max timtout count for each task before it being declared failed task.")
chunkPerTask := flag.Int("chunk_per_task", 10, "chunk per task.") chunkPerTask := flag.Int("chunk-per-task", 10, "chunk per task.")
logLevel := flag.String("log-level", "info",
"log level, possible values: debug, info, warning, error, fatal, panic")
flag.Parse() flag.Parse()
level, e := log.ParseLevel(*logLevel)
candy.Must(e)
log.SetLevel(level)
if *endpoints == "" { if *endpoints == "" {
log.Warningln("-endpoints not set, fault tolerance not be enabled.") log.Warningln("-endpoints not set, fault tolerance not be enabled.")
} }
......
...@@ -40,7 +40,7 @@ func main() { ...@@ -40,7 +40,7 @@ func main() {
idx = *index idx = *index
} else { } else {
e = pserver.NewEtcdClient(*etcdEndpoint, *numPservers, *etcdTimeout) e = pserver.NewEtcdClient(*etcdEndpoint, *numPservers, *etcdTimeout)
idx, err = e.Register() idx, err = e.Register(*port)
candy.Must(err) candy.Must(err)
cp, err = pserver.NewCheckpointFromFile(*checkpointPath, idx, e) cp, err = pserver.NewCheckpointFromFile(*checkpointPath, idx, e)
......
...@@ -2,6 +2,7 @@ package master ...@@ -2,6 +2,7 @@ package master
import ( import (
"os" "os"
"time"
"github.com/PaddlePaddle/Paddle/go/connection" "github.com/PaddlePaddle/Paddle/go/connection"
"github.com/PaddlePaddle/recordio" "github.com/PaddlePaddle/recordio"
...@@ -36,9 +37,9 @@ func (c *Client) getRecords() { ...@@ -36,9 +37,9 @@ func (c *Client) getRecords() {
for { for {
t, err := c.getTask() t, err := c.getTask()
if err != nil { if err != nil {
// TODO(helin): wait before move on with next
// getTask call. // getTask call.
log.Errorln(err) log.Errorf("Get task failed, sleep 3 seconds and continue, %s", err)
time.Sleep(3 * time.Second)
continue continue
} }
......
...@@ -215,6 +215,7 @@ func readChunks(globPaths []string) ([]Chunk, error) { ...@@ -215,6 +215,7 @@ func readChunks(globPaths []string) ([]Chunk, error) {
} }
count := index.NumChunks() count := index.NumChunks()
log.Infof("readChunks: file %s has %d chunks", path, count)
for i := 0; i < count; i++ { for i := 0; i < count; i++ {
chunk := Chunk{ chunk := Chunk{
Path: path, Path: path,
......
import paddle.v2 as paddle import paddle.v2 as paddle
import paddle.v2.dataset.uci_housing as uci_housing import paddle.v2.dataset.uci_housing as uci_housing
import paddle.v2.master as master
import os
import cPickle as pickle
etcd_ip = os.getenv("MASTER_IP", "127.0.0.1")
etcd_endpoint = "http://" + etcd_ip + ":2379"
def cloud_reader():
print "connecting to master, etcd endpoints: ", etcd_endpoint
master_client = master.client(etcd_endpoint, 5, 64)
master_client.set_dataset(
["/pfs/dlnel/public/dataset/uci_housing/uci_housing-*-of-*"])
while 1:
r, e = master_client.next_record()
if not r:
break
yield pickle.loads(r)
def main(): def main():
...@@ -22,13 +40,13 @@ def main(): ...@@ -22,13 +40,13 @@ def main():
# create optimizer of new remote updater to pserver # create optimizer of new remote updater to pserver
optimizer = paddle.optimizer.Momentum(momentum=0) optimizer = paddle.optimizer.Momentum(momentum=0)
#TODO(zhihong) : replace optimizer with new OptimizerConfig print "etcd endoint: ", etcd_endpoint
trainer = paddle.trainer.SGD(cost=cost, trainer = paddle.trainer.SGD(cost=cost,
parameters=parameters, parameters=parameters,
update_equation=optimizer, update_equation=optimizer,
is_local=False, is_local=False,
pserver_spec="localhost:3000") pserver_spec=etcd_endpoint,
use_etcd=True)
# event_handler to print training and testing info # event_handler to print training and testing info
def event_handler(event): def event_handler(event):
...@@ -47,11 +65,11 @@ def main(): ...@@ -47,11 +65,11 @@ def main():
print "Test %d, %.2f" % (event.pass_id, result.cost) print "Test %d, %.2f" % (event.pass_id, result.cost)
# training # training
# NOTE: use uci_housing.train() as reader for non-paddlecloud training
trainer.train( trainer.train(
reader=paddle.batch( reader=paddle.batch(
paddle.reader.shuffle( paddle.reader.shuffle(
uci_housing.train(), buf_size=500), cloud_reader, buf_size=500), batch_size=2),
batch_size=2),
feeding={'x': 0, feeding={'x': 0,
'y': 1}, 'y': 1},
event_handler=event_handler, event_handler=event_handler,
......
...@@ -12,6 +12,7 @@ import ( ...@@ -12,6 +12,7 @@ import (
) )
const ( const (
// DefaultEtcdTimeout is the default etcd timeout
DefaultEtcdTimeout time.Duration = 5 * time.Second DefaultEtcdTimeout time.Duration = 5 * time.Second
) )
...@@ -66,12 +67,12 @@ func (p *EtcdClient) List() []Server { ...@@ -66,12 +67,12 @@ func (p *EtcdClient) List() []Server {
for { for {
for i := 0; i < psDesired; i++ { for i := 0; i < psDesired; i++ {
ctx, cancel := context.WithTimeout(context.Background(), p.timeout) ctx, cancel := context.WithTimeout(context.Background(), p.timeout)
cancel()
psKey := pserver.PsPath + strconv.Itoa(i) psKey := pserver.PsPath + strconv.Itoa(i)
log.Debugf("checking %s", psKey) log.Debugf("checking %s", psKey)
resp, err := p.client.Get(ctx, psKey) resp, err := p.client.Get(ctx, psKey)
cancel()
if err != nil { if err != nil {
log.Infof("Get psKey= %s error, %v", psKey, err) log.Infof("Get psKey=%s error, %v", psKey, err)
time.Sleep(p.timeout) time.Sleep(p.timeout)
continue continue
} }
......
...@@ -49,7 +49,7 @@ func NewEtcdClient(endpoints string, numPservers int, timeout time.Duration) *Et ...@@ -49,7 +49,7 @@ func NewEtcdClient(endpoints string, numPservers int, timeout time.Duration) *Et
// Register registers the pserver on etcd // Register registers the pserver on etcd
// //
// Register returns the index of the current pserver. // Register returns the index of the current pserver.
func (e *EtcdClient) Register() (int, error) { func (e *EtcdClient) Register(port int) (int, error) {
var err error var err error
e.externalIP, err = networkhelper.GetExternalIP() e.externalIP, err = networkhelper.GetExternalIP()
...@@ -116,7 +116,7 @@ func (e *EtcdClient) Register() (int, error) { ...@@ -116,7 +116,7 @@ func (e *EtcdClient) Register() (int, error) {
for { for {
ctx, cancel := context.WithTimeout(context.Background(), time.Second) ctx, cancel := context.WithTimeout(context.Background(), time.Second)
var err error var err error
pserverIdx, err = e.registerPserverEtcd(ctx) pserverIdx, err = e.registerPserverEtcd(ctx, port)
cancel() cancel()
if err != nil { if err != nil {
log.Warn(err) log.Warn(err)
...@@ -140,7 +140,7 @@ func (e *EtcdClient) initDesiredPservers(ctx context.Context, numPservers int) ( ...@@ -140,7 +140,7 @@ func (e *EtcdClient) initDesiredPservers(ctx context.Context, numPservers int) (
} }
// registerPserverEtcd registers pserver node on etcd using transaction. // registerPserverEtcd registers pserver node on etcd using transaction.
func (e *EtcdClient) registerPserverEtcd(ctx context.Context) (int, error) { func (e *EtcdClient) registerPserverEtcd(ctx context.Context, port int) (int, error) {
var idx int var idx int
_, err := concurrency.NewSTM(e.etcdClient, func(c concurrency.STM) error { _, err := concurrency.NewSTM(e.etcdClient, func(c concurrency.STM) error {
registered := false registered := false
...@@ -156,8 +156,9 @@ func (e *EtcdClient) registerPserverEtcd(ctx context.Context) (int, error) { ...@@ -156,8 +156,9 @@ func (e *EtcdClient) registerPserverEtcd(ctx context.Context) (int, error) {
log.Fatal(err) log.Fatal(err)
} }
// find the first id and write info // find the first id and write info
c.Put(psKey, e.externalIP, clientv3.WithLease(resp.ID)) pserverAddr := e.externalIP + ":" + strconv.Itoa(port)
log.Debugf("set pserver node %s with value %s", psKey, e.externalIP) c.Put(psKey, pserverAddr, clientv3.WithLease(resp.ID))
log.Debugf("set pserver node %s with value %s", psKey, pserverAddr)
ch, kaerr := e.etcdClient.KeepAlive(context.TODO(), resp.ID) ch, kaerr := e.etcdClient.KeepAlive(context.TODO(), resp.ID)
if kaerr != nil { if kaerr != nil {
log.Errorf("keepalive etcd node error: %v", kaerr) log.Errorf("keepalive etcd node error: %v", kaerr)
......
...@@ -843,7 +843,8 @@ public: ...@@ -843,7 +843,8 @@ public:
bool useSparseUpdater); bool useSparseUpdater);
static ParameterUpdater* createNewRemoteUpdater( static ParameterUpdater* createNewRemoteUpdater(
OptimizationConfig* config, OptimizationConfig* config,
const std::string pserverSpec) throw(UnsupportError); const std::string pserverSpec,
const bool useEtcd) throw(UnsupportError);
~ParameterUpdater(); ~ParameterUpdater();
/** /**
......
...@@ -33,11 +33,12 @@ ParameterUpdater *ParameterUpdater::createLocalUpdater( ...@@ -33,11 +33,12 @@ ParameterUpdater *ParameterUpdater::createLocalUpdater(
ParameterUpdater *ParameterUpdater::createNewRemoteUpdater( ParameterUpdater *ParameterUpdater::createNewRemoteUpdater(
OptimizationConfig *config, OptimizationConfig *config,
const std::string pserverSpec) throw(UnsupportError) { const std::string pserverSpec,
const bool useEtcd) throw(UnsupportError) {
#ifndef PADDLE_WITHOUT_GOLANG #ifndef PADDLE_WITHOUT_GOLANG
auto updater = new ParameterUpdater(); auto updater = new ParameterUpdater();
updater->m->updater.reset(new paddle::NewRemoteParameterUpdater( updater->m->updater.reset(new paddle::NewRemoteParameterUpdater(
config->m->getConfig(), pserverSpec)); config->m->getConfig(), pserverSpec, useEtcd));
return updater; return updater;
#else #else
throw UnsupportError(); throw UnsupportError();
......
# ddim lib cc_library(enforce SRCS enforce.cc DEPS glog)
cc_test(enforce_test SRCS enforce_test.cc DEPS enforce)
cc_library(ddim SRCS ddim.cc) cc_library(ddim SRCS ddim.cc)
cc_test(ddim_test SRCS ddim_test.cc DEPS ddim) cc_test(ddim_test SRCS ddim_test.cc DEPS ddim)
nv_test(dim_test SRCS dim_test.cu DEPS ddim) nv_test(dim_test SRCS dim_test.cu DEPS ddim)
cc_test(tensor_test SRCS tensor_test.cc DEPS ddim place paddle_memory) cc_library(tensor SRCS tensor.cc DEPS ddim place enforce paddle_memory)
cc_test(tensor_test SRCS tensor_test.cc DEPS tensor)
cc_test(variable_test SRCS variable_test.cc) cc_test(variable_test SRCS variable_test.cc)
cc_test(scope_test SRCS scope_test.cc) cc_test(scope_test SRCS scope_test.cc)
cc_test(enforce_test SRCS enforce_test.cc)
proto_library(attr_type SRCS attr_type.proto) proto_library(attr_type SRCS attr_type.proto)
proto_library(op_proto SRCS op_proto.proto DEPS attr_type) proto_library(op_proto SRCS op_proto.proto DEPS attr_type)
cc_test(op_proto_test SRCS op_proto_test.cc DEPS op_proto protobuf) cc_test(op_proto_test SRCS op_proto_test.cc DEPS op_proto protobuf)
proto_library(op_desc SRCS op_desc.proto DEPS attr_type) proto_library(op_desc SRCS op_desc.proto DEPS attr_type)
cc_test(op_desc_test SRCS op_desc_test.cc DEPS op_desc protobuf) cc_test(op_desc_test SRCS op_desc_test.cc DEPS op_desc protobuf)
cc_library(operator SRCS operator.cc DEPS op_desc device_context)
cc_library(operator SRCS operator.cc DEPS op_desc device_context tensor)
cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry) cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry)
cc_library(op_registry SRCS op_registry.cc DEPS op_proto op_desc)
cc_library(op_registry SRCS op_registry.cc DEPS op_proto op_desc enforce)
cc_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry operator) cc_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry operator)
py_proto_compile(framework_py_proto SRCS attr_type.proto op_proto.proto op_desc.proto) py_proto_compile(framework_py_proto SRCS attr_type.proto op_proto.proto op_desc.proto)
# Generate an empty __init__.py to make framework_py_proto as a valid python module. # Generate an empty __init__.py to make framework_py_proto as a valid python module.
add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py) add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py)
add_dependencies(framework_py_proto framework_py_proto_init) add_dependencies(framework_py_proto framework_py_proto_init)
proto_library(net_proto SRCS net_proto.proto DEPS op_proto) proto_library(net_proto SRCS net_proto.proto DEPS op_proto)
cc_library(net SRCS net.cc DEPS net_proto) cc_library(net SRCS net.cc DEPS operator net_proto op_registry)
cc_test(net_op_test SRCS net_op_test.cc DEPS net)
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/framework/ddim.h" #include "paddle/framework/ddim.h"
#include "paddle/framework/enforce.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -192,13 +193,56 @@ std::vector<int> vectorize(const DDim& ddim) { ...@@ -192,13 +193,56 @@ std::vector<int> vectorize(const DDim& ddim) {
return result; return result;
} }
struct ProductVisitor : public boost::static_visitor<ssize_t> {
template <int D>
ssize_t operator()(const Dim<D>& dim) {
return product(dim);
}
};
ssize_t product(const DDim& ddim) { ssize_t product(const DDim& ddim) {
ssize_t result = 1; ProductVisitor visitor;
std::vector<int> v = vectorize(ddim); return boost::apply_visitor(visitor, ddim);
for (auto i : v) { }
result *= i;
struct SliceVectorizeVisitor : public boost::static_visitor<> {
std::vector<int>& vector;
int begin;
int end;
SliceVectorizeVisitor(std::vector<int>& v, int b, int e)
: vector(v), begin(b), end(e) {
PADDLE_ENFORCE(begin < end,
"Begin index must be less than end index in ddim slice.");
PADDLE_ENFORCE(begin >= 0,
"Begin index can't be less than zero in ddim slice.");
} }
return result;
template <int S>
void operator()(const Dim<S>& dim) {
if (begin == 0) {
vector.push_back(dim.head);
} else {
--begin;
}
--end;
if (end > 0) {
this->operator()(dim.tail);
}
}
void operator()(const Dim<1>& dim) {
PADDLE_ENFORCE(end == 1, "End index in ddim slice is out of bound.");
vector.push_back(dim.head);
}
};
DDim slice_ddim(const DDim& dim, int begin, int end) {
std::vector<int> vec;
vec.reserve(end - begin);
SliceVectorizeVisitor visitor(vec, begin, end);
boost::apply_visitor(visitor, dim);
return make_ddim(vec);
} }
/// \cond HIDDEN /// \cond HIDDEN
......
...@@ -81,6 +81,15 @@ std::vector<int> vectorize(const DDim& ddim); ...@@ -81,6 +81,15 @@ std::vector<int> vectorize(const DDim& ddim);
ssize_t product(const DDim& ddim); ssize_t product(const DDim& ddim);
/**
* \brief Slice a ddim
*
* Slice dim with [begin, end).
* e.g. DDim d = make_ddim({1,2,3,4,5});
* slice_ddim(d, 1, 3); ====> {2,3}
*/
DDim slice_ddim(const DDim& dim, int begin, int end);
/** /**
* \brief What is the length of this dimension? * \brief What is the length of this dimension?
* *
......
...@@ -52,6 +52,26 @@ TEST(DDim, Equality) { ...@@ -52,6 +52,26 @@ TEST(DDim, Equality) {
// product of a DDim // product of a DDim
EXPECT_EQ(paddle::framework::product(vddim), 45); EXPECT_EQ(paddle::framework::product(vddim), 45);
EXPECT_EQ(
paddle::framework::product(paddle::framework::make_ddim({3, 2, 5, 3})),
90);
// slice a DDim
paddle::framework::DDim ddim2 =
paddle::framework::make_ddim({1, 2, 3, 4, 5, 6});
paddle::framework::DDim ss = paddle::framework::slice_ddim(ddim2, 2, 5);
EXPECT_EQ(arity(ss), 3);
EXPECT_EQ(ss[0], 3);
EXPECT_EQ(ss[1], 4);
EXPECT_EQ(ss[2], 5);
paddle::framework::DDim ss2 = paddle::framework::slice_ddim(ddim2, 0, 6);
EXPECT_EQ(arity(ss2), 6);
EXPECT_EQ(ss2[0], 1);
EXPECT_EQ(ss2[1], 2);
EXPECT_EQ(ss2[2], 3);
EXPECT_EQ(ss2[3], 4);
EXPECT_EQ(ss2[4], 5);
EXPECT_EQ(ss2[5], 6);
} }
TEST(DDim, Print) { TEST(DDim, Print) {
......
#include <thrust/device_vector.h> #include <thrust/device_vector.h>
#include <sstream> #include <sstream>
#include "paddle/framework/dim.h"
#include "gtest/gtest.h" #include "gtest/gtest.h"
#include "paddle/framework/dim.h"
__global__ void test(paddle::framework::Dim<2>* o) { __global__ void test(paddle::framework::Dim<2>* o) {
o[0] = paddle::framework::make_dim(5, 6); o[0] = paddle::framework::make_dim(5, 6);
} }
__global__ void dyn_idx_gpu(int* o) { __global__ void dyn_idx_gpu(int* o) {
auto d = paddle::framework::make_dim(5, 6); auto d = paddle::framework::make_dim(5, 6);
o[0] = d[1]; o[0] = d[1];
} }
TEST(Dim, Equality) { TEST(Dim, Equality) {
// construct a Dim on the CPU // construct a Dim on the CPU
auto a = paddle::framework::make_dim(3, 4); auto a = paddle::framework::make_dim(3, 4);
EXPECT_EQ(paddle::framework::get<0>(a), 3); EXPECT_EQ(paddle::framework::get<0>(a), 3);
EXPECT_EQ(paddle::framework::get<1>(a), 4); EXPECT_EQ(paddle::framework::get<1>(a), 4);
// construct a Dim on the GPU // construct a Dim on the GPU
thrust::device_vector<paddle::framework::Dim<2>> t(2); thrust::device_vector<paddle::framework::Dim<2>> t(2);
test<<<1,1>>>(thrust::raw_pointer_cast(t.data())); test<<<1, 1>>>(thrust::raw_pointer_cast(t.data()));
a = t[0]; a = t[0];
EXPECT_EQ(paddle::framework::get<0>(a), 5); EXPECT_EQ(paddle::framework::get<0>(a), 5);
EXPECT_EQ(paddle::framework::get<1>(a), 6); EXPECT_EQ(paddle::framework::get<1>(a), 6);
// linearization // linearization
auto b = paddle::framework::make_dim(7, 8); auto b = paddle::framework::make_dim(7, 8);
EXPECT_EQ(paddle::framework::linearize(a, b), 83); EXPECT_EQ(paddle::framework::linearize(a, b), 83);
// product // product
EXPECT_EQ(paddle::framework::product(a), 30); EXPECT_EQ(paddle::framework::product(a), 30);
// mutate a Dim // mutate a Dim
paddle::framework::get<1>(b) = 10; paddle::framework::get<1>(b) = 10;
EXPECT_EQ(paddle::framework::get<0>(b), 7); EXPECT_EQ(paddle::framework::get<0>(b), 7);
EXPECT_EQ(paddle::framework::get<1>(b), 10); EXPECT_EQ(paddle::framework::get<1>(b), 10);
// dynamic access // dynamic access
paddle::framework::get(b, 0) = 8; paddle::framework::get(b, 0) = 8;
b[1] = 11; b[1] = 11;
EXPECT_EQ(paddle::framework::get<0>(b), 8); EXPECT_EQ(paddle::framework::get<0>(b), 8);
EXPECT_EQ(paddle::framework::get<1>(b), 11); EXPECT_EQ(paddle::framework::get<1>(b), 11);
EXPECT_EQ(paddle::framework::get(b, 0), 8); EXPECT_EQ(paddle::framework::get(b, 0), 8);
EXPECT_EQ(b[1], 11); EXPECT_EQ(b[1], 11);
// dynamic access on GPU // dynamic access on GPU
thrust::device_vector<int> r(1); thrust::device_vector<int> r(1);
dyn_idx_gpu<<<1,1>>>(thrust::raw_pointer_cast(r.data())); dyn_idx_gpu<<<1, 1>>>(thrust::raw_pointer_cast(r.data()));
int res = r[0]; int res = r[0];
EXPECT_EQ(res, 6); EXPECT_EQ(res, 6);
// ex_prefix_mul // ex_prefix_mul
paddle::framework::Dim<3> c = paddle::framework::ex_prefix_mul(paddle::framework::Dim<3>(3, 4, 5)); paddle::framework::Dim<3> c =
EXPECT_EQ(paddle::framework::get<0>(c), 1); paddle::framework::ex_prefix_mul(paddle::framework::Dim<3>(3, 4, 5));
EXPECT_EQ(paddle::framework::get<1>(c), 3); EXPECT_EQ(paddle::framework::get<0>(c), 1);
EXPECT_EQ(paddle::framework::get<2>(c), 12); EXPECT_EQ(paddle::framework::get<1>(c), 3);
EXPECT_EQ(paddle::framework::get<2>(c), 12);
// generate from an index
auto size = paddle::framework::make_dim(4, 5, 2); // generate from an index
c = paddle::framework::Dim<3>(14, size); auto size = paddle::framework::make_dim(4, 5, 2);
EXPECT_EQ(paddle::framework::get<0>(c), 2); c = paddle::framework::Dim<3>(14, size);
EXPECT_EQ(paddle::framework::get<1>(c), 3); EXPECT_EQ(paddle::framework::get<0>(c), 2);
EXPECT_EQ(paddle::framework::get<2>(c), 0); EXPECT_EQ(paddle::framework::get<1>(c), 3);
c = paddle::framework::Dim<3>(25, size); EXPECT_EQ(paddle::framework::get<2>(c), 0);
EXPECT_EQ(paddle::framework::get<0>(c), 1); c = paddle::framework::Dim<3>(25, size);
EXPECT_EQ(paddle::framework::get<1>(c), 1); EXPECT_EQ(paddle::framework::get<0>(c), 1);
EXPECT_EQ(paddle::framework::get<2>(c), 1); EXPECT_EQ(paddle::framework::get<1>(c), 1);
EXPECT_EQ(paddle::framework::get<2>(c), 1);
} }
TEST(Dim, Bool) { TEST(Dim, Bool) {
auto a = paddle::framework::make_dim(3, 4); auto a = paddle::framework::make_dim(3, 4);
auto b = paddle::framework::make_dim(5, 6); auto b = paddle::framework::make_dim(5, 6);
auto c = paddle::framework::make_dim(3, 4); auto c = paddle::framework::make_dim(3, 4);
// in_bounds check // in_bounds check
EXPECT_TRUE(paddle::framework::contained(a, b)); EXPECT_TRUE(paddle::framework::contained(a, b));
EXPECT_FALSE(paddle::framework::contained(b, a)); EXPECT_FALSE(paddle::framework::contained(b, a));
// comparison // comparison
EXPECT_TRUE(a == a); EXPECT_TRUE(a == a);
EXPECT_FALSE(a == b); EXPECT_FALSE(a == b);
EXPECT_TRUE(a == c); EXPECT_TRUE(a == c);
} }
TEST(Dim, Print) { TEST(Dim, Print) {
{ {
std::stringstream ss; std::stringstream ss;
auto a = paddle::framework::make_dim(2, 3); auto a = paddle::framework::make_dim(2, 3);
ss << a; ss << a;
EXPECT_EQ(ss.str(), "2, 3"); EXPECT_EQ(ss.str(), "2, 3");
} }
{ {
std::stringstream ss; std::stringstream ss;
ss << paddle::framework::make_dim(8); ss << paddle::framework::make_dim(8);
EXPECT_EQ(ss.str(), "8"); EXPECT_EQ(ss.str(), "8");
} }
} }
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/enforce.h"
...@@ -10,6 +10,7 @@ See the License for the specific language governing permissions and ...@@ -10,6 +10,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <glog/logging.h>
#include <paddle/string/printf.h> #include <paddle/string/printf.h>
#include <exception> #include <exception>
#include <sstream> #include <sstream>
...@@ -58,12 +59,17 @@ class EnforceNotMet : public std::exception { ...@@ -58,12 +59,17 @@ class EnforceNotMet : public std::exception {
/** /**
* @brief Enforce a condition, otherwise throw an EnforceNotMet * @brief Enforce a condition, otherwise throw an EnforceNotMet
*/ */
#ifdef NDEBUG
#define PADDLE_ENFORCE(condition, ...) \ #define PADDLE_ENFORCE(condition, ...) \
do { \ do { \
if (UNLIKELY(!(condition))) { \ if (UNLIKELY(!(condition))) { \
PADDLE_THROW(__VA_ARGS__); \ PADDLE_THROW(__VA_ARGS__); \
} \ } \
} while (0) } while (0)
#else
#define PADDLE_ENFORCE(condition, ...) \
CHECK(condition) << ::paddle::string::Sprintf(__VA_ARGS__);
#endif
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -19,18 +19,41 @@ ...@@ -19,18 +19,41 @@
namespace paddle { namespace paddle {
namespace framework { namespace framework {
PlainNet::PlainNet(const NetDesc& def) {} void PlainNet::CompleteAddOp() {
std::unordered_set<std::string> input_set;
void PlainNet::InferShape(const ScopePtr& scope) const { std::unordered_set<std::string> output_set;
std::unordered_set<std::string> temp_output;
for (auto& op : ops_) { for (auto& op : ops_) {
op.InferShape(); for (auto& ipt : op->inputs_) {
if (!Contains(output_set, ipt)) { // Not other op's output
input_set.insert(ipt);
} else {
temp_output.insert(ipt);
}
}
for (auto& opt : op->outputs_) {
output_set.insert(opt);
}
} }
} inputs_.reserve(input_set.size());
std::copy(input_set.begin(), input_set.end(), std::back_inserter(inputs_));
void PlainNet::Run(const ScopePtr& scope, const DeviceContext& ctx) const {
for (auto& op : ops_) { outputs_.reserve(output_set.size());
op.Run(ctx); std::vector<int> tmp_index;
tmp_index.reserve(temp_output.size());
int idx = 0;
for (auto& opt : output_set) {
if (Contains(temp_output, opt)) {
tmp_index.push_back(idx);
}
outputs_.push_back(opt);
++idx;
} }
attrs_["temporary_index"] = tmp_index;
add_op_done_ = true;
} }
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License"); Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. you may not use this file except in compliance with the License.
You may obtain a copy of the License at You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0 http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <paddle/framework/op_desc.pb.h>
#include <paddle/framework/operator.h>
#include "paddle/framework/net_proto.pb.h" #include "paddle/framework/net_proto.pb.h"
#include "paddle/framework/op_proto.pb.h" #include "paddle/framework/op_proto.pb.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/scope.h" #include "paddle/framework/scope.h"
#include "paddle/platform/device_context.h" #include "paddle/platform/device_context.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
using namespace paddle::platform;
// operator's index stored in a network.
typedef int OpIndex;
/**
* NOTE following codes are some definitions of unimplemented concepts.
* We write some basic implementation to make Net compilable. These APIs will
* keep updating if the concepts related are implemented.
*/
struct OpDesc;
struct OpAttrs {};
class Operator {
public:
Operator(const OpDesc &def) {}
void InferShape() const {}
void Run(const DeviceContext &ctx) const {}
};
/** /**
* @brief Network that manage the operators it has. * @brief Network is also a type of Operator
*
* It will manage the operators it has.
* *
* Network is the container and controller of a set of operators, user can build * Network is the container and controller of a set of operators.
* a real network from a NetDesc which is a protobuf message and use
* Network.Run() * to run all the operators in the network.
* A network object knows all Operators belonging to this network. Variables, * A network object knows all Operators belonging to this network. Variables,
* which are inputs and outputs of these operators, are created and managed by a * which are inputs and outputs of these operators, are created and managed by a
* hierarchy of Scope objects. * hierarchy of Scope objects.
* *
* This is the base class of network, all the networks should implement the apis * This is the base class of network, all the networks should implement the APIs
* it defines. * it defines.
*/ */
class Net { class Net : public OperatorBase {
public: public:
/** virtual void AddOp(const OperatorPtr& op) = 0;
* @brief Infer shapes of all inputs and outputs of operators. virtual void CompleteAddOp() = 0;
*/
virtual void InferShape(const ScopePtr &scope) const = 0;
/**
* @brief Run the network.
*
* Run all the operators and return success(true) or not, with all the
* variables are located in `scope`. `context` describes the detail execution
* environment for ops. `begin` and `end` specify the scope of `ops_` to run,
* If no positive indexes are provided, all operators in `ops_` will run.
*/
virtual void Run(const ScopePtr &scope, const DeviceContext &ctx) const = 0;
/**
* @brief Add an Operator according to `def`.
*/
virtual OpIndex AddOp(const OpProto &def) = 0;
/**
* @brief Add optimizer operators acctording to `attrs`.
*/
virtual void AddOptimizerOps(const OpAttrs &attrs) = 0;
/**
* @brief Add backward operators.
*/
virtual void AddBackwardOps() = 0;
/**
* @brief Create a network.
*/
static std::unique_ptr<Net> Create(const NetDesc &def = NetDesc());
virtual ~Net() {}
}; };
using NetPtr = std::shared_ptr<Net>;
/** /**
* @brief a basic implementation of Net. * @brief a basic implementation of Net.
* *
...@@ -103,18 +55,14 @@ class Net { ...@@ -103,18 +55,14 @@ class Net {
class PlainNet : public Net { class PlainNet : public Net {
public: public:
/** /**
* @brief Initialize a PlainNet. * Infer all the operators' input and output variables' shapes, will be called
*
* Initialize from a network describe by `def`. NetDesc is the definition of
* a network.
*/
PlainNet(const NetDesc &def);
/**
* Infer all the operators' input and output varialbes' shapes, will be called
* before every mini-batch * before every mini-batch
*/ */
virtual void InferShape(const ScopePtr &scope) const override; void InferShape(const ScopePtr& scope) const override {
for (auto& op : ops_) {
op->InferShape(scope);
}
}
/** /**
* @brief Run the network. * @brief Run the network.
...@@ -123,49 +71,32 @@ class PlainNet : public Net { ...@@ -123,49 +71,32 @@ class PlainNet : public Net {
* scope will be used instead. If no OpContext is provicded, default context * scope will be used instead. If no OpContext is provicded, default context
* will be used. * will be used.
*/ */
virtual void Run(const ScopePtr &scope, void Run(const ScopePtr& scope,
const DeviceContext &ctx) const override; const platform::DeviceContext& dev_ctx) const override {
for (auto& op : ops_) {
op->Run(scope, dev_ctx);
}
}
/** /**
* @brief Add an operator to this network. * @brief Add an operator by ptr
*/ */
virtual OpIndex AddOp(const OpProto &def) override; void AddOp(const OperatorPtr& op) override {
PADDLE_ENFORCE(!add_op_done_, "Cannot AddOp when this network is sealed");
ops_.push_back(op);
}
/** void CompleteAddOp() override;
* @brief Add all optimizer operators related into the network.
*/
virtual void AddOptimizerOps(const OpAttrs &attrs) override;
/** std::vector<OperatorPtr> ops_;
* @brief Add all backward operators related into the network.
*/
virtual void AddBackwardOps() override;
virtual ~PlainNet() override {}
protected:
/**
* @brief Build the network.
*
* Create operators accordding to `def`, will be called by the constructor.
*/
void BuildNet(const NetDesc &def);
/**
* @brief Add an operator into this network.
*
* Add a operator which is identified as `type` and has attributes described
* in `attrs`, the `inputs` are the keys of readonly input variables,
* `outputs` are keys of mutable output variables. An `OpIndex` will be
* returned to indicate the offset of the new operator in `ops_`.
*/
OpIndex AddOp(const std::string &type, const std::vector<std::string> &inputs,
const std::vector<std::string> &outputs,
const OpAttrs &attrs = OpAttrs());
private: private:
// the operators owned by `Network`. bool add_op_done_{false};
std::vector<Operator> ops_;
template <typename T, typename KeyType>
static bool Contains(T container, KeyType key) {
return container.find(key) != container.end();
}
}; };
} // namespace framework } // namespace framework
......
#include <gtest/gtest.h>
#include <paddle/framework/net.h>
#include <paddle/framework/op_registry.h>
#include <paddle/framework/operator.h>
namespace pd = paddle::framework;
static int infer_shape_cnt = 0;
static int run_cnt = 0;
class TestOp : public pd::OperatorBase {
public:
void InferShape(const paddle::framework::ScopePtr& scope) const override {
++infer_shape_cnt;
}
void Run(const paddle::framework::ScopePtr& scope,
const paddle::platform::DeviceContext& dev_ctx) const override {
++run_cnt;
}
};
template <typename T>
void AssertSameVectorWithoutOrder(const std::vector<T>& expected,
const std::vector<T>& actual) {
ASSERT_EQ(expected.size(), actual.size());
std::unordered_set<T> expected_set;
for (auto& tmp : expected) {
expected_set.insert(tmp);
}
for (auto& act : actual) {
ASSERT_NE(expected_set.end(), expected_set.find(act));
}
}
TEST(OpKernel, all) {
auto net = std::make_shared<paddle::framework::PlainNet>();
ASSERT_NE(net, nullptr);
auto op1 = std::make_shared<TestOp>();
op1->inputs_ = {"x", "w1", "b1"};
op1->outputs_ = {"y"};
net->AddOp(op1);
auto op2 = std::make_shared<TestOp>();
op2->inputs_ = {"y", "w2", "b2"};
op2->outputs_ = {"z"};
net->AddOp(op2);
net->CompleteAddOp();
AssertSameVectorWithoutOrder({"x", "w1", "b1", "w2", "b2"}, net->inputs_);
AssertSameVectorWithoutOrder({"y", "z"}, net->outputs_);
auto tmp_idx_iter = net->attrs_.find("temporary_index");
ASSERT_NE(net->attrs_.end(), tmp_idx_iter);
auto& tmp_idx = boost::get<std::vector<int>>(tmp_idx_iter->second);
ASSERT_EQ(1UL, tmp_idx.size());
ASSERT_EQ("y", net->outputs_[tmp_idx[0]]);
auto scope = std::make_shared<pd::Scope>();
paddle::platform::CPUDeviceContext dev_ctx;
net->InferShape(scope);
net->Run(scope, dev_ctx);
ASSERT_EQ(2, infer_shape_cnt);
ASSERT_EQ(2, run_cnt);
ASSERT_THROW(net->AddOp(op2), paddle::framework::EnforceNotMet);
}
#pragma once #pragma once
#include <algorithm> #include <algorithm>
#include <atomic>
#include <type_traits> #include <type_traits>
#include <unordered_map> #include <unordered_map>
#include <unordered_set> #include <unordered_set>
...@@ -61,7 +62,14 @@ class OpProtoAndCheckerMaker { ...@@ -61,7 +62,14 @@ class OpProtoAndCheckerMaker {
OpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker) OpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker)
: proto_(proto), op_checker_(op_checker) {} : proto_(proto), op_checker_(op_checker) {}
~OpProtoAndCheckerMaker() { CheckNoDuplicatedAttrs(); } ~OpProtoAndCheckerMaker() {
PADDLE_ENFORCE(validated_, "should call Validate after build");
}
void Validate() {
validated_ = true;
CheckNoDuplicatedInOutAttrs();
}
protected: protected:
void AddInput(const std::string& name, const std::string& comment, void AddInput(const std::string& name, const std::string& comment,
...@@ -163,19 +171,26 @@ Add a mark to which output is temporary is helpful for future optimization. ...@@ -163,19 +171,26 @@ Add a mark to which output is temporary is helpful for future optimization.
} }
} }
void CheckNoDuplicatedAttrs() { void CheckNoDuplicatedInOutAttrs() {
std::unordered_set<std::string> names; std::unordered_set<std::string> names;
size_t cnt = 0; auto checker = [&](const std::string& name) {
PADDLE_ENFORCE(!names.count(name), "[%s] is duplicated", name);
names.insert(name);
};
for (auto& attr : proto_->attrs()) { for (auto& attr : proto_->attrs()) {
names.insert(attr.name()); checker(attr.name());
++cnt; }
for (auto& input : proto_->inputs()) {
checker(input.name());
}
for (auto& output : proto_->outputs()) {
checker(output.name());
} }
PADDLE_ENFORCE(names.size() == cnt,
"Cannot register two attribute in same name!");
} }
OpProto* proto_; OpProto* proto_;
OpAttrChecker* op_checker_; OpAttrChecker* op_checker_;
bool validated_{false};
bool has_multiple_input_{false}; bool has_multiple_input_{false};
bool has_multiple_output_{false}; bool has_multiple_output_{false};
bool has_temporary_output_{false}; bool has_temporary_output_{false};
...@@ -190,7 +205,8 @@ class OpRegistry { ...@@ -190,7 +205,8 @@ class OpRegistry {
creators()[op_type] = [] { return new OpType; }; creators()[op_type] = [] { return new OpType; };
OpProto& op_proto = protos()[op_type]; OpProto& op_proto = protos()[op_type];
OpAttrChecker& op_checker = op_checkers()[op_type]; OpAttrChecker& op_checker = op_checkers()[op_type];
ProtoMakerType(&op_proto, &op_checker); auto maker = ProtoMakerType(&op_proto, &op_checker);
maker.Validate();
*op_proto.mutable_type() = op_type; *op_proto.mutable_type() = op_type;
PADDLE_ENFORCE( PADDLE_ENFORCE(
op_proto.IsInitialized(), op_proto.IsInitialized(),
...@@ -199,27 +215,42 @@ class OpRegistry { ...@@ -199,27 +215,42 @@ class OpRegistry {
} }
static OperatorPtr CreateOp(const OpDesc& op_desc) { static OperatorPtr CreateOp(const OpDesc& op_desc) {
//! Create a OpPtr by type.
std::string op_type = op_desc.type(); std::string op_type = op_desc.type();
OperatorPtr op(creators().at(op_type)()); OperatorPtr op(creators().at(op_type)());
op->desc_ = op_desc; //! Fill op's data member. Not use constructor because it will be noising
//! for Op developer.
const OpProto& op_proto = protos().at(op_type);
op->type_ = op_desc.type();
// set op's inputs_ from desc.
op->inputs_.reserve((size_t)op_desc.inputs_size()); op->inputs_.reserve((size_t)op_desc.inputs_size());
std::copy(op_desc.inputs().begin(), op_desc.inputs().end(), std::copy(op_desc.inputs().begin(), op_desc.inputs().end(),
std::back_inserter(op->inputs_)); std::back_inserter(op->inputs_));
// set op's outputs_ from desc.
op->outputs_.reserve((size_t)op_desc.outputs_size()); op->outputs_.reserve((size_t)op_desc.outputs_size());
std::copy(op_desc.outputs().begin(), op_desc.outputs().end(), std::copy(op_desc.outputs().begin(), op_desc.outputs().end(),
std::back_inserter(op->outputs_)); std::back_inserter(op->outputs_));
//! Fill attrs, and validate attrs.
for (auto& attr : op_desc.attrs()) { for (auto& attr : op_desc.attrs()) {
op->attrs_[attr.name()] = AttrTypeHelper::GetAttrValue(attr); op->attrs_[attr.name()] = AttrTypeHelper::GetAttrValue(attr);
} }
op_checkers().at(op_type).Check(op->attrs_); op_checkers().at(op_type).Check(op->attrs_);
//! Convert Temporary variable name to an unique variable name.
GenerateTempVariableName(op.get());
// set argument offsets stored in op.
CreateInOutOffsetMap(op, op_proto);
//! Other op's custom Init for a complex Op. For simple Op, the Init
//! method do nothing.
op->Init(); op->Init();
return op; return op;
} }
private: // init op.in_out_idxs_ to accelerate argument's offset lookup.
static std::unordered_map<std::string, OpCreator>& creators() { static void CreateInOutOffsetMap(OperatorPtr op, const OpProto& proto) {
static std::unordered_map<std::string, OpCreator> creators_; op->CreateInOutOffsetMap(proto);
return creators_;
} }
static std::unordered_map<std::string, OpProto>& protos() { static std::unordered_map<std::string, OpProto>& protos() {
...@@ -227,6 +258,23 @@ class OpRegistry { ...@@ -227,6 +258,23 @@ class OpRegistry {
return protos_; return protos_;
}; };
private:
static void GenerateTempVariableName(OperatorBase* op) {
static std::atomic<size_t> gUniqId(0UL);
for (auto& outname : op->outputs_) {
if (outname == OperatorBase::TMP_VAR_NAME()) {
outname += op->type_;
outname += "@";
outname += std::to_string(gUniqId.fetch_add(1));
}
}
}
static std::unordered_map<std::string, OpCreator>& creators() {
static std::unordered_map<std::string, OpCreator> creators_;
return creators_;
}
static std::unordered_map<std::string, OpAttrChecker>& op_checkers() { static std::unordered_map<std::string, OpAttrChecker>& op_checkers() {
static std::unordered_map<std::string, OpAttrChecker> op_checkers_; static std::unordered_map<std::string, OpAttrChecker> op_checkers_;
return op_checkers_; return op_checkers_;
...@@ -241,12 +289,18 @@ class OpRegisterHelper { ...@@ -241,12 +289,18 @@ class OpRegisterHelper {
} }
}; };
/**
* check if MACRO is used in GLOBAL NAMESPACE.
*/
#define STATIC_ASSERT_GLOBAL_NAMESPACE(uniq_name, msg) \ #define STATIC_ASSERT_GLOBAL_NAMESPACE(uniq_name, msg) \
struct __test_global_namespace_##uniq_name##__ {}; \ struct __test_global_namespace_##uniq_name##__ {}; \
static_assert(std::is_same<::__test_global_namespace_##uniq_name##__, \ static_assert(std::is_same<::__test_global_namespace_##uniq_name##__, \
__test_global_namespace_##uniq_name##__>::value, \ __test_global_namespace_##uniq_name##__>::value, \
msg) msg)
/**
* Macro to Register Operator.
*/
#define REGISTER_OP(__op_type, __op_class, __op_maker_class) \ #define REGISTER_OP(__op_type, __op_class, __op_maker_class) \
STATIC_ASSERT_GLOBAL_NAMESPACE(__reg_op__##__op_type, \ STATIC_ASSERT_GLOBAL_NAMESPACE(__reg_op__##__op_type, \
"REGISTER_OP must be in global namespace"); \ "REGISTER_OP must be in global namespace"); \
...@@ -254,9 +308,12 @@ class OpRegisterHelper { ...@@ -254,9 +308,12 @@ class OpRegisterHelper {
__op_register_##__op_type##__(#__op_type); \ __op_register_##__op_type##__(#__op_type); \
int __op_register_##__op_type##_handle__() { return 0; } int __op_register_##__op_type##_handle__() { return 0; }
#define REGISTER_OP_KERNEL(type, GPU_OR_CPU, PlaceType, KernelType) \ /**
* Macro to Register OperatorKernel.
*/
#define REGISTER_OP_KERNEL(type, DEVICE_TYPE, PlaceType, KernelType) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \ STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_op_kernel_##type##_##GPU_OR_CPU##__, \ __reg_op_kernel_##type##_##DEVICE_TYPE##__, \
"REGISTER_OP_KERNEL must be in global namespace"); \ "REGISTER_OP_KERNEL must be in global namespace"); \
struct __op_kernel_register__##type##__ { \ struct __op_kernel_register__##type##__ { \
__op_kernel_register__##type##__() { \ __op_kernel_register__##type##__() { \
...@@ -267,7 +324,7 @@ class OpRegisterHelper { ...@@ -267,7 +324,7 @@ class OpRegisterHelper {
} \ } \
}; \ }; \
static __op_kernel_register__##type##__ __reg_kernel_##type##__; \ static __op_kernel_register__##type##__ __reg_kernel_##type##__; \
int __op_kernel_register_##type##_handle_##GPU_OR_CPU##__() { return 0; } int __op_kernel_register_##type##_handle_##DEVICE_TYPE##__() { return 0; }
#define REGISTER_OP_GPU_KERNEL(type, KernelType) \ #define REGISTER_OP_GPU_KERNEL(type, KernelType) \
REGISTER_OP_KERNEL(type, GPU, ::paddle::platform::GPUPlace, KernelType) REGISTER_OP_KERNEL(type, GPU, ::paddle::platform::GPUPlace, KernelType)
...@@ -275,6 +332,10 @@ class OpRegisterHelper { ...@@ -275,6 +332,10 @@ class OpRegisterHelper {
#define REGISTER_OP_CPU_KERNEL(type, KernelType) \ #define REGISTER_OP_CPU_KERNEL(type, KernelType) \
REGISTER_OP_KERNEL(type, CPU, ::paddle::platform::CPUPlace, KernelType) REGISTER_OP_KERNEL(type, CPU, ::paddle::platform::CPUPlace, KernelType)
/**
* Macro to mark what Operator and Kernel we will use and tell the compiler to
* link them into target.
*/
#define USE_OP_WITHOUT_KERNEL(op_type) \ #define USE_OP_WITHOUT_KERNEL(op_type) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \ STATIC_ASSERT_GLOBAL_NAMESPACE( \
__use_op_without_kernel_##op_type, \ __use_op_without_kernel_##op_type, \
...@@ -292,15 +353,16 @@ class OpRegisterHelper { ...@@ -292,15 +353,16 @@ class OpRegisterHelper {
__attribute__((unused)) = \ __attribute__((unused)) = \
__op_kernel_register_##op_type##_handle_##DEVICE_TYPE##__() __op_kernel_register_##op_type##_handle_##DEVICE_TYPE##__()
#ifdef PADDLE_ONLY_CPU // use Operator with only cpu kernel.
#define USE_OP(op_type) \ #define USE_OP_CPU(op_type) \
USE_OP_WITHOUT_KERNEL(op_type); \ USE_OP_WITHOUT_KERNEL(op_type); \
USE_OP_KERNEL(op_type, CPU); USE_OP_KERNEL(op_type, CPU)
#ifdef PADDLE_ONLY_CPU
#define USE_OP(op_type) USE_OP_CPU(op_type)
#else #else
#define USE_OP(op_type) \ #define USE_OP(op_type) \
USE_OP_WITHOUT_KERNEL(op_type); \ USE_OP_CPU(op_type); \
USE_OP_KERNEL(op_type, CPU); \
USE_OP_KERNEL(op_type, GPU) USE_OP_KERNEL(op_type, GPU)
#endif #endif
......
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include <gtest/gtest.h> #include <gtest/gtest.h>
namespace pd = paddle::framework;
namespace paddle { namespace paddle {
namespace framework { namespace framework {
class CosineOp : public OperatorBase { class CosineOp : public OperatorBase {
...@@ -28,8 +30,6 @@ class MyTestOp : public OperatorBase { ...@@ -28,8 +30,6 @@ class MyTestOp : public OperatorBase {
void InferShape(const ScopePtr& scope) const override {} void InferShape(const ScopePtr& scope) const override {}
void Run(const ScopePtr& scope, void Run(const ScopePtr& scope,
const platform::DeviceContext& dev_ctx) const override {} const platform::DeviceContext& dev_ctx) const override {}
public:
}; };
class MyTestOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker { class MyTestOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
...@@ -182,3 +182,35 @@ TEST(OpRegistry, CustomChecker) { ...@@ -182,3 +182,35 @@ TEST(OpRegistry, CustomChecker) {
int test_attr = op->GetAttr<int>("test_attr"); int test_attr = op->GetAttr<int>("test_attr");
ASSERT_EQ(test_attr, 4); ASSERT_EQ(test_attr, 4);
} }
class TestAttrProtoMaker : public pd::OpProtoAndCheckerMaker {
public:
TestAttrProtoMaker(pd::OpProto* proto, pd::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddAttr<float>("scale", "scale of test op");
AddAttr<float>("scale", "scale of test op");
}
};
TEST(ProtoMaker, DuplicatedAttr) {
pd::OpProto op_proto;
pd::OpAttrChecker op_checker;
auto proto_maker = TestAttrProtoMaker(&op_proto, &op_checker);
ASSERT_THROW(proto_maker.Validate(), paddle::framework::EnforceNotMet);
}
class TestInOutProtoMaker : public pd::OpProtoAndCheckerMaker {
public:
TestInOutProtoMaker(pd::OpProto* proto, pd::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("input", "input of test op");
AddInput("input", "input of test op");
}
};
TEST(ProtoMaker, DuplicatedInOut) {
pd::OpProto op_proto;
pd::OpAttrChecker op_checker;
auto proto_maker = TestInOutProtoMaker(&op_proto, &op_checker);
ASSERT_THROW(proto_maker.Validate(), paddle::framework::EnforceNotMet);
}
...@@ -12,30 +12,86 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,30 +12,86 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <algorithm>
#include "paddle/framework/operator.h" #include "paddle/framework/operator.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
void OperatorBase::CreateInOutOffsetMap(const OpProto& proto) {
PADDLE_ENFORCE(in_out_idxs_.empty(), "duplicate call CreateInOutOffsetMap");
for (int i = 0; i < proto.inputs_size(); i++) {
const auto& name = proto.inputs()[i].name();
in_out_idxs_[name] = i;
}
for (int i = 0; i < proto.outputs_size(); i++) {
const auto& name = proto.outputs()[i].name();
in_out_idxs_[name] = i;
}
}
const std::string& OperatorBase::Input(const std::string& name) const {
auto it = in_out_idxs_.find(name);
PADDLE_ENFORCE(it != in_out_idxs_.end(), "no key [%s] in in_out_idxs_", name);
if (attrs_.count("input_format") == 0) {
return inputs_[it->second];
} else {
const auto& input_format = GetAttr<std::vector<int>>("input_format");
int idx = input_format[it->second];
return inputs_.at(idx);
}
}
std::vector<std::string> OperatorBase::Inputs(const std::string& name) const {
auto input_format = GetAttr<std::vector<int>>("input_format");
auto offset = in_out_idxs_.at(name);
return std::vector<std::string>{
inputs_.begin() + input_format.at(offset),
inputs_.begin() + input_format.at(offset + 1)};
}
const std::string& OperatorBase::Output(const std::string& name) const {
auto it = in_out_idxs_.find(name);
PADDLE_ENFORCE(it != in_out_idxs_.end(), "no key [%s] in in_out_idxs_", name);
if (attrs_.count("output_format") == 0) {
return outputs_[it->second];
} else {
const auto& output_format = GetAttr<std::vector<int>>("output_format");
int idx = output_format[it->second];
return outputs_.at(idx);
}
}
std::vector<std::string> OperatorBase::Outputs(const std::string& name) const {
auto output_format = GetAttr<std::vector<int>>("output_format");
auto offset = in_out_idxs_.at(name);
return std::vector<std::string>{
outputs_.begin() + output_format.at(offset),
outputs_.begin() + output_format.at(offset + 1)};
}
std::string OperatorBase::DebugString() const { std::string OperatorBase::DebugString() const {
std::stringstream ss; std::stringstream ss;
ss << "=================\n"; ss << "Op(" << type_ << "), inputs:(";
ss << "type = " << desc_.type() << "\n"; for (size_t i = 0; i < inputs_.size(); ++i) {
ss << "inputs = ["; ss << inputs_[i];
for (auto& ipt : inputs_) { if (i != inputs_.size() - 1) {
ss << ipt << ", "; ss << ", ";
} }
ss << "]\n";
ss << "outputs = [";
for (auto& opt : outputs_) {
ss << opt << ", ";
} }
ss << "]\n"; ss << "), outputs:(";
ss << "attr_keys = ["; for (size_t i = 0; i < outputs_.size(); ++i) {
for (auto& attr : attrs_) { ss << outputs_[i];
ss << attr.first << ", "; if (i != outputs_.size() - 1) {
ss << ", ";
}
} }
ss << "]\n"; ss << ").";
return ss.str(); return ss.str();
} }
......
...@@ -14,18 +14,20 @@ limitations under the License. */ ...@@ -14,18 +14,20 @@ limitations under the License. */
#pragma once #pragma once
#include <paddle/framework/attr_checker.h>
#include <paddle/framework/op_desc.pb.h>
#include <paddle/framework/scope.h>
#include <paddle/framework/tensor.h>
#include <paddle/platform/device_context.h>
#include <paddle/platform/place.h>
#include <paddle/utils/Error.h>
#include <boost/variant.hpp> #include <boost/variant.hpp>
#include <string> #include <string>
#include <unordered_map> #include <unordered_map>
#include <vector> #include <vector>
#include "paddle/framework/attr_checker.h"
#include "paddle/framework/op_desc.pb.h"
#include "paddle/framework/op_proto.pb.h"
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
#include "paddle/utils/Error.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -39,6 +41,13 @@ using OperatorPtr = std::shared_ptr<OperatorBase>; ...@@ -39,6 +41,13 @@ using OperatorPtr = std::shared_ptr<OperatorBase>;
*/ */
class OperatorBase { class OperatorBase {
public: public:
/// If a variable is a empty variable, that name will be used.
static std::string EMPTY_VAR_NAME() { return "@EMPTY@"; }
/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
static std::string TMP_VAR_NAME() { return "@TEMP@"; }
virtual ~OperatorBase() {} virtual ~OperatorBase() {}
template <typename T> template <typename T>
...@@ -62,14 +71,72 @@ class OperatorBase { ...@@ -62,14 +71,72 @@ class OperatorBase {
virtual void Run(const ScopePtr& scope, virtual void Run(const ScopePtr& scope,
const platform::DeviceContext& dev_ctx) const = 0; const platform::DeviceContext& dev_ctx) const = 0;
protected: // Get a input with argument's name described in `op_proto`
std::string Type() const { return desc_.type(); } const std::string& Input(const std::string& name) const;
// Get a input which has multiple variables.
// TODO add a vector_view to prevent memory copy.
std::vector<std::string> Inputs(const std::string& name) const;
// Get a output with argument's name described in `op_proto`
const std::string& Output(const std::string& name) const;
// Get an output which has multiple variables.
// TODO add a vector_view to prevent memory copy.
std::vector<std::string> Outputs(const std::string& name) const;
// init in_out_idxs_ to accelerate argument's offset lookup.
void CreateInOutOffsetMap(const OpProto& proto);
public: public:
OpDesc desc_; std::string type_;
std::vector<std::string> inputs_; std::vector<std::string> inputs_;
std::vector<std::string> outputs_; std::vector<std::string> outputs_;
AttributeMap attrs_; AttributeMap attrs_;
// store the arguments' offset described in op_desc.
std::unordered_map<std::string, int> in_out_idxs_;
};
class KernelContext {
public:
KernelContext(const OperatorBase* op, const std::shared_ptr<Scope>& scope,
const platform::DeviceContext& device_context)
: op_(*op), scope_(scope), device_context_(device_context) {}
const Variable* Input(int index) const {
return scope_->GetVariable(op_.inputs_[index]);
}
Variable* Output(int index) const {
return scope_->GetVariable(op_.outputs_[index]);
}
const Variable* Input(const std::string& name) const {
return scope_->GetVariable(op_.Input(name));
}
const Variable* Output(const std::string& name) const {
return scope_->GetVariable(op_.Output(name));
}
const std::vector<const Variable*> Inputs(const std::string& name) const {
auto names = op_.Inputs(name);
std::vector<const Variable*> res;
std::transform(
names.begin(), names.end(), res.begin(),
[this](const std::string& name) { return scope_->GetVariable(name); });
return res;
}
const std::vector<const Variable*> Outputs(const std::string& name) const {
auto names = op_.Outputs(name);
std::vector<const Variable*> res;
std::transform(
names.begin(), names.end(), res.begin(),
[this](const std::string& name) { return scope_->GetVariable(name); });
return res;
}
const OperatorBase& op_;
const std::shared_ptr<Scope>& scope_;
const platform::DeviceContext& device_context_;
}; };
class OpKernel { class OpKernel {
...@@ -80,25 +147,6 @@ class OpKernel { ...@@ -80,25 +147,6 @@ class OpKernel {
* device resource such as CUDA stream, cublas handle, etc. from * device resource such as CUDA stream, cublas handle, etc. from
* KernelContext. User should construct it before run the Operator. * KernelContext. User should construct it before run the Operator.
*/ */
class KernelContext {
public:
KernelContext(const OperatorBase* op, const ScopePtr& scope,
const platform::DeviceContext& device_context)
: op_(*op), scope_(scope), device_context_(device_context) {}
const Variable* Input(int index) const {
return scope_->GetVariable(op_.inputs_[index]);
}
Variable* Output(int index) const {
return scope_->GetVariable(op_.outputs_[index]);
}
const OperatorBase& op_;
const ScopePtr& scope_;
const platform::DeviceContext& device_context_;
};
virtual void Compute(const KernelContext& context) const = 0; virtual void Compute(const KernelContext& context) const = 0;
virtual ~OpKernel() {} virtual ~OpKernel() {}
...@@ -142,8 +190,8 @@ class OperatorWithKernel : public OperatorBase { ...@@ -142,8 +190,8 @@ class OperatorWithKernel : public OperatorBase {
void Run(const ScopePtr& scope, void Run(const ScopePtr& scope,
const platform::DeviceContext& dev_ctx) const final { const platform::DeviceContext& dev_ctx) const final {
auto& opKernel = AllOpKernels().at(Type()).at(OpKernelKey(dev_ctx)); auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
opKernel->Compute(OpKernel::KernelContext(this, scope, dev_ctx)); opKernel->Compute(KernelContext(this, scope, dev_ctx));
} }
static std::unordered_map<std::string /* op_type */, OpKernelMap>& static std::unordered_map<std::string /* op_type */, OpKernelMap>&
...@@ -151,6 +199,7 @@ class OperatorWithKernel : public OperatorBase { ...@@ -151,6 +199,7 @@ class OperatorWithKernel : public OperatorBase {
static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels; static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
return g_all_op_kernels; return g_all_op_kernels;
} }
void InferShape(const std::shared_ptr<Scope>& scope) const final { void InferShape(const std::shared_ptr<Scope>& scope) const final {
std::vector<const Tensor*> ins; std::vector<const Tensor*> ins;
VarNamesToTensors(scope, inputs_, &ins); VarNamesToTensors(scope, inputs_, &ins);
......
...@@ -19,14 +19,17 @@ limitations under the License. */ ...@@ -19,14 +19,17 @@ limitations under the License. */
namespace paddle { namespace paddle {
namespace framework { namespace framework {
class OperatorTest : public OperatorBase { static int op_run_num = 0;
class OpWithoutKernelTest : public OperatorBase {
public: public:
void Init() override { x = 1; } void Init() override { x = 1; }
void InferShape(const ScopePtr& scope) const override {} void InferShape(const ScopePtr& scope) const override {}
void Run(const ScopePtr& scope, void Run(const ScopePtr& scope,
const platform::DeviceContext& dev_ctx) const override { const platform::DeviceContext& dev_ctx) const override {
float scale = GetAttr<float>("scale"); op_run_num++;
ASSERT_NEAR(scale, 3.14, 1e-5); ASSERT_EQ((int)inputs_.size(), 1);
ASSERT_EQ((int)outputs_.size(), 1);
ASSERT_EQ(scope->GetVariable(inputs_[0]), nullptr); ASSERT_EQ(scope->GetVariable(inputs_[0]), nullptr);
ASSERT_EQ(x, 1); ASSERT_EQ(x, 1);
ASSERT_NE(scope->GetVariable(outputs_[0]), nullptr); ASSERT_NE(scope->GetVariable(outputs_[0]), nullptr);
...@@ -36,15 +39,14 @@ class OperatorTest : public OperatorBase { ...@@ -36,15 +39,14 @@ class OperatorTest : public OperatorBase {
float x = 0; float x = 0;
}; };
class OperatorTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker { class OpeWithoutKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
public: public:
OperatorTestProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker) OpeWithoutKernelTestProtoAndCheckerMaker(OpProto* proto,
OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) { : OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("input", "input of test op"); AddInput("input", "input of test op");
AddOutput("output", "output of test op"); AddOutput("output", "output of test op");
AddAttr<float>("scale", "scale of cosine op") AddAttr<float>("scale", "scale of cosine op");
.SetDefault(1.0)
.LargerThan(0.0);
AddComment("This is test op"); AddComment("This is test op");
} }
}; };
...@@ -52,8 +54,8 @@ class OperatorTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker { ...@@ -52,8 +54,8 @@ class OperatorTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
REGISTER_OP(test_operator, paddle::framework::OperatorTest, REGISTER_OP(test_operator, paddle::framework::OpWithoutKernelTest,
paddle::framework::OperatorTestProtoAndCheckerMaker); paddle::framework::OpeWithoutKernelTestProtoAndCheckerMaker);
TEST(OperatorBase, all) { TEST(OperatorBase, all) {
paddle::framework::OpDesc op_desc; paddle::framework::OpDesc op_desc;
...@@ -63,18 +65,17 @@ TEST(OperatorBase, all) { ...@@ -63,18 +65,17 @@ TEST(OperatorBase, all) {
auto attr = op_desc.mutable_attrs()->Add(); auto attr = op_desc.mutable_attrs()->Add();
attr->set_name("scale"); attr->set_name("scale");
attr->set_type(paddle::framework::AttrType::FLOAT); attr->set_type(paddle::framework::AttrType::FLOAT);
float scale = 3.14; attr->set_f(3.14);
attr->set_f(scale);
paddle::platform::CPUDeviceContext device_context; paddle::platform::CPUDeviceContext device_context;
auto scope = std::make_shared<paddle::framework::Scope>(); auto scope = std::make_shared<paddle::framework::Scope>();
paddle::framework::OperatorPtr op = paddle::framework::OperatorPtr op =
paddle::framework::OpRegistry::CreateOp(op_desc); paddle::framework::OpRegistry::CreateOp(op_desc);
ASSERT_EQ(op->GetAttr<float>("scale"), scale);
scope->CreateVariable("OUT1"); scope->CreateVariable("OUT1");
ASSERT_EQ(paddle::framework::op_run_num, 0);
op->Run(scope, device_context); op->Run(scope, device_context);
std::cout << op->DebugString() << std::endl; ASSERT_EQ(paddle::framework::op_run_num, 1);
} }
namespace paddle { namespace paddle {
...@@ -84,8 +85,8 @@ class OpKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker { ...@@ -84,8 +85,8 @@ class OpKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
public: public:
OpKernelTestProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker) OpKernelTestProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) { : OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("input", "input of test op"); AddInput("x", "input of test op");
AddOutput("output", "output of test op"); AddOutput("y", "output of test op");
AddAttr<float>("scale", "scale of cosine op") AddAttr<float>("scale", "scale of cosine op")
.SetDefault(1.0) .SetDefault(1.0)
.LargerThan(0.0); .LargerThan(0.0);
...@@ -93,6 +94,8 @@ class OpKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker { ...@@ -93,6 +94,8 @@ class OpKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
} }
}; };
static int cpu_kernel_run_num = 0;
class OpWithKernelTest : public OperatorWithKernel { class OpWithKernelTest : public OperatorWithKernel {
protected: protected:
void InferShape(const std::vector<const Tensor*>& inputs, void InferShape(const std::vector<const Tensor*>& inputs,
...@@ -101,11 +104,65 @@ class OpWithKernelTest : public OperatorWithKernel { ...@@ -101,11 +104,65 @@ class OpWithKernelTest : public OperatorWithKernel {
class CPUKernelTest : public OpKernel { class CPUKernelTest : public OpKernel {
public: public:
void Compute(const KernelContext& context) const { void Compute(const KernelContext& ctx) const {
float scale = context.op_.GetAttr<float>("scale");
ASSERT_NEAR(scale, 3.14, 1e-5);
std::cout << "this is cpu kernel" << std::endl; std::cout << "this is cpu kernel" << std::endl;
std::cout << context.op_.DebugString() << std::endl; std::cout << ctx.op_.DebugString() << std::endl;
cpu_kernel_run_num++;
ASSERT_EQ(ctx.op_.Input("x"), "IN1");
ASSERT_EQ(ctx.op_.Output("y"), "OUT1");
}
};
// multiple inputs test
class OperatorMultiInputsTest : public OperatorBase {
public:
void Init() override { x = 1; }
void InferShape(const std::shared_ptr<Scope>& scope) const override {}
void Run(const std::shared_ptr<Scope>& scope,
const platform::DeviceContext& dev_ctx) const override {
ASSERT_EQ(scope->GetVariable(inputs_[0]), nullptr);
ASSERT_EQ(x, 1);
ASSERT_NE(scope->GetVariable(outputs_[0]), nullptr);
ASSERT_EQ(Input("x"), "IN1");
ASSERT_EQ(Input("y"), "OUT1");
}
public:
float x = 0;
};
class OpKernelTestMultiInputsProtoAndCheckerMaker
: public OpProtoAndCheckerMaker {
public:
OpKernelTestMultiInputsProtoAndCheckerMaker(OpProto* proto,
OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInputs("xs", "inputs of test op");
AddInput("k", "input of test op");
AddOutputs("ys", "outputs of test op");
AddAttr<float>("scale", "scale of cosine op")
.SetDefault(1.0)
.LargerThan(0.0);
AddComment("This is test op");
}
};
class CPUKernalMultiInputsTest : public OpKernel {
public:
void Compute(const KernelContext& ctx) const {
auto xs = ctx.op_.Inputs("xs");
ASSERT_EQ(xs.size(), 3UL);
ASSERT_EQ(xs[0], "x0");
ASSERT_EQ(xs[1], "x1");
ASSERT_EQ(xs[2], "x2");
auto k = ctx.op_.Input("k");
ASSERT_EQ(k, "k0");
auto ys = ctx.op_.Outputs("ys");
ASSERT_EQ(ys.size(), 2UL);
ASSERT_EQ(ys[0], "y0");
ASSERT_EQ(ys[1], "y1");
} }
}; };
...@@ -116,6 +173,7 @@ REGISTER_OP(op_with_kernel, paddle::framework::OpWithKernelTest, ...@@ -116,6 +173,7 @@ REGISTER_OP(op_with_kernel, paddle::framework::OpWithKernelTest,
paddle::framework::OpKernelTestProtoAndCheckerMaker); paddle::framework::OpKernelTestProtoAndCheckerMaker);
REGISTER_OP_CPU_KERNEL(op_with_kernel, paddle::framework::CPUKernelTest); REGISTER_OP_CPU_KERNEL(op_with_kernel, paddle::framework::CPUKernelTest);
// test with single input
TEST(OpKernel, all) { TEST(OpKernel, all) {
paddle::framework::OpDesc op_desc; paddle::framework::OpDesc op_desc;
op_desc.set_type("op_with_kernel"); op_desc.set_type("op_with_kernel");
...@@ -131,5 +189,51 @@ TEST(OpKernel, all) { ...@@ -131,5 +189,51 @@ TEST(OpKernel, all) {
paddle::framework::OperatorPtr op = paddle::framework::OperatorPtr op =
paddle::framework::OpRegistry::CreateOp(op_desc); paddle::framework::OpRegistry::CreateOp(op_desc);
ASSERT_EQ(paddle::framework::cpu_kernel_run_num, 0);
op->Run(scope, cpu_device_context);
ASSERT_EQ(paddle::framework::cpu_kernel_run_num, 1);
}
REGISTER_OP(op_multi_inputs_with_kernel, paddle::framework::OpWithKernelTest,
paddle::framework::OpKernelTestMultiInputsProtoAndCheckerMaker);
REGISTER_OP_CPU_KERNEL(op_multi_inputs_with_kernel,
paddle::framework::CPUKernalMultiInputsTest);
// test with multi inputs
TEST(OpKernel, multi_inputs) {
using namespace paddle::framework;
OpDesc op_desc;
op_desc.set_type("op_multi_inputs_with_kernel");
*op_desc.mutable_inputs()->Add() = "x0";
*op_desc.mutable_inputs()->Add() = "x1";
*op_desc.mutable_inputs()->Add() = "x2";
*op_desc.mutable_inputs()->Add() = "k0";
*op_desc.mutable_outputs()->Add() = "y0";
*op_desc.mutable_outputs()->Add() = "y1";
auto attr = op_desc.mutable_attrs()->Add();
attr->set_name("scale");
attr->set_type(paddle::framework::AttrType::FLOAT);
attr->set_f(3.14);
auto attr0 = op_desc.mutable_attrs()->Add();
attr0->set_name("input_format");
attr0->set_type(paddle::framework::AttrType::INTS);
auto input_format = attr0->mutable_ints();
input_format->Add(0); // x0
input_format->Add(3); // k
input_format->Add(4); // end
auto attr1 = op_desc.mutable_attrs()->Add();
attr1->set_name("output_format");
attr1->set_type(paddle::framework::AttrType::INTS);
auto output_format = attr1->mutable_ints();
output_format->Add(0); // y0
output_format->Add(2); // y1
paddle::platform::CPUDeviceContext cpu_device_context;
auto scope = std::make_shared<Scope>();
OperatorPtr op(paddle::framework::OpRegistry::CreateOp(op_desc));
op->Run(scope, cpu_device_context); op->Run(scope, cpu_device_context);
} }
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <paddle/framework/tensor.h>
namespace paddle {
namespace framework {}
} // namespace paddle
...@@ -32,7 +32,7 @@ __global__ void KeRowConv(real* y, const real* x, const real* w, ...@@ -32,7 +32,7 @@ __global__ void KeRowConv(real* y, const real* x, const real* w,
for (int i = tidy; i < context; i += blky) { for (int i = tidy; i < context; i += blky) {
sw[i][tidx] = gidx + tidx < width ? w[i*width + gidx + tidx] : 0.0; sw[i][tidx] = gidx + tidx < width ? w[i*width + gidx + tidx] : 0.0;
} }
__syncthreads(); __syncthreads();
for (int i = 0; i < numSeq; ++i) { for (int i = 0; i < numSeq; ++i) {
...@@ -144,12 +144,15 @@ __global__ void KeRowConvBwWeight(real* dw, const real* x, const real* dy, ...@@ -144,12 +144,15 @@ __global__ void KeRowConvBwWeight(real* dw, const real* x, const real* dy,
int yoff = start + j; int yoff = start + j;
// transpose // transpose
sh_x[tidx][tidy] = (xoff < width && yoff < end) ? x[yoff * width + xoff] : 0.0; sh_x[tidx][tidy] = (xoff < width && yoff < end) ?
sh_dy[tidx][tidy + context - 1] = (xoff < width && yoff < end) ? dy[yoff * width + xoff] : 0.0; x[yoff * width + xoff] : 0.0;
sh_dy[tidx][tidy + context - 1] = (xoff < width && yoff < end) ?
dy[yoff * width + xoff] : 0.0;
__syncthreads(); __syncthreads();
if (tidy < (context - 1)) { if (tidy < (context - 1)) {
yoff = yoff - context + 1; yoff = yoff - context + 1;
sh_dy[tidx][tidy] = (xoff < width && yoff >= start) ? dy[yoff * width + xoff] : 0.0; sh_dy[tidx][tidy] = (xoff < width && yoff >= start) ?
dy[yoff * width + xoff] : 0.0;
} }
__syncthreads(); __syncthreads();
...@@ -199,11 +202,13 @@ __global__ void KeRowConvBwWeight2(real* dw, const real* x, const real* dy, ...@@ -199,11 +202,13 @@ __global__ void KeRowConvBwWeight2(real* dw, const real* x, const real* dy,
int yoff = start + j; int yoff = start + j;
// transpose // transpose
sh_x[tidx][tidy] = (xoff < width && yoff < end) ? x[yoff * width + xoff] : 0.0; sh_x[tidx][tidy] = (xoff < width && yoff < end) ?
x[yoff * width + xoff] : 0.0;
__syncthreads(); __syncthreads();
for (int t = 0; t < context; t++) { for (int t = 0; t < context; t++) {
sh_dy[tidx][tidy] = (xoff < width && (yoff - t) >= start && yoff - t < end) ? dy[(yoff - t) * width + xoff] : 0.0; sh_dy[tidx][tidy] = (xoff < width && (yoff - t) >= start &&
yoff - t < end) ? dy[(yoff - t) * width + xoff] : 0.0;
__syncthreads(); __syncthreads();
real val = sh_x[tidy][tidx] * sh_dy[tidy][tidx]; real val = sh_x[tidy][tidx] * sh_dy[tidy][tidx];
...@@ -239,7 +244,7 @@ __global__ void KeRowConvBwData(real* dx, const real* w, const real* dy, ...@@ -239,7 +244,7 @@ __global__ void KeRowConvBwData(real* dx, const real* w, const real* dy,
for (int i = tidy; i < context; i += blky) { for (int i = tidy; i < context; i += blky) {
sw[i][tidx] = gidx + tidx < width ? w[i*width + gidx + tidx] : 0.0; sw[i][tidx] = gidx + tidx < width ? w[i*width + gidx + tidx] : 0.0;
} }
__syncthreads(); __syncthreads();
for (int i = 0; i < numSeq; ++i) { for (int i = 0; i < numSeq; ++i) {
...@@ -312,7 +317,7 @@ void RowConvGrad<DEVICE_TYPE_GPU>(const GpuMatrix& outG, ...@@ -312,7 +317,7 @@ void RowConvGrad<DEVICE_TYPE_GPU>(const GpuMatrix& outG,
dim3 dimBlock(32, 32); dim3 dimBlock(32, 32);
dim3 dimGrid(DIVUP(width, dimBlock.x), 1); dim3 dimGrid(DIVUP(width, dimBlock.x), 1);
real* dw = filterG.getData(); real* dw = filterG.getData();
if (contextLength <= 32) { if (contextLength <= 32) {
KeRowConvBwWeight<32, 32, 32> KeRowConvBwWeight<32, 32, 32>
<<<dimGrid, dimBlock, 0, STREAM_DEFAULT>>> <<<dimGrid, dimBlock, 0, STREAM_DEFAULT>>>
(dw, x, dy, starts, height, width, numSeq, contextLength); (dw, x, dy, starts, height, width, numSeq, contextLength);
......
if(WITH_GPU) function(op_library TARGET)
nv_library(add_op SRCS add_op.cc add_op.cu DEPS operator op_registry glog ddim) # op_library is a function to create op library. The interface is same as
else() # cc_library. But it handle split GPU/CPU code and link some common library
cc_library(add_op SRCS add_op.cc DEPS operator op_registry glog ddim) # for ops.
endif() set(cc_srcs)
set(cu_srcs)
set(op_common_deps operator op_registry)
set(options "")
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(op_library "${options}" "${oneValueArgs}"
"${multiValueArgs}" ${ARGN})
foreach(src ${op_library_SRCS})
if (${src} MATCHES ".*\\.cu$")
list(APPEND cu_srcs ${src})
elseif(${src} MATCHES ".*\\.cc$")
list(APPEND cc_srcs ${src})
else()
message(FATAL_ERROR "${TARGET} Source file ${src} should only be .cc or .cu")
endif()
endforeach()
list(LENGTH cc_srcs cc_srcs_len)
if (${cc_srcs_len} EQUAL 0)
message(FATAL_ERROR "The op library ${TARGET} should contains at least one .cc file")
endif()
list(LENGTH cu_srcs cu_srcs_len)
if (${cu_srcs_len} EQUAL 0)
message(WARNING "The op library ${TARGET} not support GPU!")
endif()
if (WITH_GPU)
nv_library(${TARGET} SRCS ${cc_srcs} ${cu_srcs} DEPS ${op_library_DEPS}
${op_common_deps})
else()
cc_library(${TARGET} SRCS ${cc_srcs} DEPS ${op_library_DEPS}
${op_common_deps})
endif()
endfunction()
op_library(add_op SRCS add_op.cc add_op.cu)
cc_test(add_op_test SRCS add_op_test.cc DEPS add_op) cc_test(add_op_test SRCS add_op_test.cc DEPS add_op)
...@@ -8,10 +8,10 @@ namespace operators { ...@@ -8,10 +8,10 @@ namespace operators {
template <typename Place> template <typename Place>
class AddKernel : public framework::OpKernel { class AddKernel : public framework::OpKernel {
public: public:
void Compute(const KernelContext &context) const override { void Compute(const framework::KernelContext &context) const override {
LOG(INFO) << "Add kernel in " << typeid(Place).name(); LOG(INFO) << "Add kernel in " << typeid(Place).name();
} }
}; };
} // namespace op } // namespace operators
} // namespace paddle } // namespace paddle
cc_library(paddle_pybind SHARED SRCS pybind.cc DEPS pybind python) cc_library(paddle_pybind SHARED SRCS pybind.cc DEPS pybind python add_op)
...@@ -13,12 +13,18 @@ See the License for the specific language governing permissions and ...@@ -13,12 +13,18 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <Python.h> #include <Python.h>
#include <paddle/framework/op_registry.h>
#include <paddle/framework/scope.h> #include <paddle/framework/scope.h>
#include <pybind11/pybind11.h> #include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <fstream>
#include <vector>
namespace py = pybind11; namespace py = pybind11;
namespace pd = paddle::framework; namespace pd = paddle::framework;
USE_OP(add_two);
PYBIND11_PLUGIN(core) { PYBIND11_PLUGIN(core) {
py::module m("core", "C++ core of Paddle Paddle"); py::module m("core", "C++ core of Paddle Paddle");
...@@ -43,5 +49,37 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -43,5 +49,37 @@ All parameter, weight, gradient are variables in Paddle.
&pd::Scope::CreateVariable, &pd::Scope::CreateVariable,
py::return_value_policy::reference); py::return_value_policy::reference);
//! @note: Be careful! PyBind will return std::string as an unicode, not
//! Python str. If you want a str object, you should cast them in Python.
m.def("get_all_op_protos", []() -> std::vector<std::string> {
auto& protos = pd::OpRegistry::protos();
std::vector<std::string> ret_values;
for (auto it = protos.begin(); it != protos.end(); ++it) {
PADDLE_ENFORCE(it->second.IsInitialized(),
"OpProto must all be initialized");
ret_values.emplace_back();
PADDLE_ENFORCE(it->second.SerializeToString(&ret_values.back()),
"Serialize OpProto Error. This could be a bug of Paddle.");
}
return ret_values;
});
m.def_submodule(
"var_names",
"The module will return special predefined variable name in Paddle")
.def("empty", pd::OperatorBase::EMPTY_VAR_NAME)
.def("temp", pd::OperatorBase::TMP_VAR_NAME);
py::class_<pd::OperatorBase, pd::OperatorPtr>(m, "Operator")
.def("__str__", &pd::OperatorBase::DebugString)
.def_static("create", [](const std::string& protobin) {
pd::OpDesc desc;
PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
"Cannot parse user input to OpDesc");
PADDLE_ENFORCE(desc.IsInitialized(),
"User OpDesc is not initialized, reason %s",
desc.InitializationErrorString());
return pd::OpRegistry::CreateOp(desc);
});
return m.ptr(); return m.ptr();
} }
...@@ -155,7 +155,8 @@ RUN apt-get update &&\ ...@@ -155,7 +155,8 @@ RUN apt-get update &&\
paddle version paddle version
${DOCKERFILE_CUDNN_DSO} ${DOCKERFILE_CUDNN_DSO}
${DOCKERFILE_GPU_ENV} ${DOCKERFILE_GPU_ENV}
ADD go/cmd/pserver/pserver /usr/bin/
ADD go/cmd/master/master /usr/bin/
# default command shows the paddle version and exit # default command shows the paddle version and exit
CMD ["paddle", "version"] CMD ["paddle", "version"]
EOF EOF
...@@ -2,9 +2,9 @@ ...@@ -2,9 +2,9 @@
set -xe set -xe
mkdir -p /paddle/build mkdir -p /paddle/build_android
cd /paddle/build cd /paddle/build_android
rm -f /paddle/install 2>/dev/null || true rm -rf /paddle/install 2>/dev/null || true
cmake -DCMAKE_SYSTEM_NAME=Android \ cmake -DCMAKE_SYSTEM_NAME=Android \
-DANDROID_STANDALONE_TOOLCHAIN=$ANDROID_STANDALONE_TOOLCHAIN \ -DANDROID_STANDALONE_TOOLCHAIN=$ANDROID_STANDALONE_TOOLCHAIN \
-DANDROID_ABI=armeabi-v7a \ -DANDROID_ABI=armeabi-v7a \
...@@ -21,6 +21,3 @@ cmake -DCMAKE_SYSTEM_NAME=Android \ ...@@ -21,6 +21,3 @@ cmake -DCMAKE_SYSTEM_NAME=Android \
.. ..
make -j `nproc` make -j `nproc`
make install make install
export PATH=/paddle/install/bin:/paddle/install/opt/paddle/bin:$PATH
paddle version
...@@ -28,6 +28,17 @@ NewRemoteParameterUpdater::NewRemoteParameterUpdater( ...@@ -28,6 +28,17 @@ NewRemoteParameterUpdater::NewRemoteParameterUpdater(
newGradients_(nullptr), newGradients_(nullptr),
pserverSpec_(pserverSpec) {} pserverSpec_(pserverSpec) {}
NewRemoteParameterUpdater::NewRemoteParameterUpdater(
const OptimizationConfig &config,
const std::string pserverSpec,
const bool useEtcd)
: trainerConfig_(config),
parameterClient_(-1),
newParameters_(nullptr),
newGradients_(nullptr),
pserverSpec_(pserverSpec),
useEtcd_(useEtcd) {}
void NewRemoteParameterUpdater::init( void NewRemoteParameterUpdater::init(
const std::vector<ParameterPtr> &parameters) { const std::vector<ParameterPtr> &parameters) {
ParameterUpdater::init(parameters); ParameterUpdater::init(parameters);
...@@ -38,8 +49,13 @@ void NewRemoteParameterUpdater::init( ...@@ -38,8 +49,13 @@ void NewRemoteParameterUpdater::init(
} }
// create parameter server client. // create parameter server client.
parameterClient_ = paddle_new_pserver_client((char *)pserverSpec_.c_str(), if (useEtcd_) {
FLAGS_trainer_id == 0); parameterClient_ = paddle_new_etcd_pserver_client(
(char *)pserverSpec_.c_str(), FLAGS_trainer_id == 0);
} else {
parameterClient_ = paddle_new_pserver_client((char *)pserverSpec_.c_str(),
FLAGS_trainer_id == 0);
}
// init new parameter and gradient. // init new parameter and gradient.
newParameters_ = initNewParameter(PARAMETER_VALUE); newParameters_ = initNewParameter(PARAMETER_VALUE);
......
...@@ -32,6 +32,9 @@ class NewRemoteParameterUpdater : public ParameterUpdater { ...@@ -32,6 +32,9 @@ class NewRemoteParameterUpdater : public ParameterUpdater {
public: public:
NewRemoteParameterUpdater(const OptimizationConfig& config, NewRemoteParameterUpdater(const OptimizationConfig& config,
const std::string pserverSpec); const std::string pserverSpec);
NewRemoteParameterUpdater(const OptimizationConfig& config,
const std::string pserverSpec,
const bool useEtcd);
~NewRemoteParameterUpdater() { ~NewRemoteParameterUpdater() {
releaseNewParameter(newParameters_); releaseNewParameter(newParameters_);
releaseNewParameter(newGradients_); releaseNewParameter(newGradients_);
...@@ -111,6 +114,8 @@ protected: ...@@ -111,6 +114,8 @@ protected:
paddle_parameter** newGradients_; paddle_parameter** newGradients_;
/// the specification of parameter server "host1:port,host1:port" /// the specification of parameter server "host1:port,host1:port"
std::string pserverSpec_; std::string pserverSpec_;
/// true if pserverSpec_ is etcd endpoint, else pserverSpec_ is pserver addr
bool useEtcd_;
}; };
} // namespace paddle } // namespace paddle
...@@ -20,7 +20,6 @@ import trainer ...@@ -20,7 +20,6 @@ import trainer
import event import event
import data_type import data_type
import topology import topology
import data_feeder
import networks import networks
import evaluator import evaluator
from . import dataset from . import dataset
...@@ -31,7 +30,6 @@ import op ...@@ -31,7 +30,6 @@ import op
import pooling import pooling
import inference import inference
import networks import networks
import py_paddle.swig_paddle as api
import minibatch import minibatch
import plot import plot
import image import image
...@@ -47,7 +45,6 @@ __all__ = [ ...@@ -47,7 +45,6 @@ __all__ = [
'data_type', 'data_type',
'attr', 'attr',
'pooling', 'pooling',
'data_feeder',
'dataset', 'dataset',
'reader', 'reader',
'topology', 'topology',
...@@ -61,6 +58,7 @@ __all__ = [ ...@@ -61,6 +58,7 @@ __all__ = [
def init(**kwargs): def init(**kwargs):
import py_paddle.swig_paddle as api
args = [] args = []
args_dict = {} args_dict = {}
# NOTE: append arguments if they are in ENV # NOTE: append arguments if they are in ENV
......
...@@ -11,7 +11,6 @@ ...@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from py_paddle import DataProviderConverter from py_paddle import DataProviderConverter
import collections import collections
import paddle.trainer.PyDataProvider2 as pydp2 import paddle.trainer.PyDataProvider2 as pydp2
......
...@@ -22,6 +22,8 @@ import importlib ...@@ -22,6 +22,8 @@ import importlib
import paddle.v2.dataset import paddle.v2.dataset
import cPickle import cPickle
import glob import glob
import cPickle as pickle
import random
__all__ = [ __all__ = [
'DATA_HOME', 'download', 'md5file', 'split', 'cluster_files_reader', 'DATA_HOME', 'download', 'md5file', 'split', 'cluster_files_reader',
...@@ -170,8 +172,6 @@ def convert(output_path, ...@@ -170,8 +172,6 @@ def convert(output_path,
name_prefix, name_prefix,
max_lines_to_shuffle=1000): max_lines_to_shuffle=1000):
import recordio import recordio
import cPickle as pickle
import random
""" """
Convert data from reader to recordio format files. Convert data from reader to recordio format files.
...@@ -201,8 +201,10 @@ def convert(output_path, ...@@ -201,8 +201,10 @@ def convert(output_path,
def write_data(w, lines): def write_data(w, lines):
random.shuffle(lines) random.shuffle(lines)
for i, d in enumerate(lines): for i, d in enumerate(lines):
d = pickle.dumps(d, pickle.HIGHEST_PROTOCOL) # FIXME(Yancey1989):
w[i % num_shards].write(d) # dumps with protocol: pickle.HIGHEST_PROTOCOL
o = pickle.dumps(d)
w[i % num_shards].write(o)
w = open_writers() w = open_writers()
lines = [] lines = []
......
...@@ -212,19 +212,19 @@ def gen_pair(querylist, partial_order="full"): ...@@ -212,19 +212,19 @@ def gen_pair(querylist, partial_order="full"):
for j in range(i + 1, len(querylist)): for j in range(i + 1, len(querylist)):
query_right = querylist[j] query_right = querylist[j]
if query_left.relevance_score > query_right.relevance_score: if query_left.relevance_score > query_right.relevance_score:
labels.append(1) labels.append([1])
docpairs.append([ docpairs.append([
np.array(query_left.feature_vector), np.array(query_left.feature_vector),
np.array(query_right.feature_vector) np.array(query_right.feature_vector)
]) ])
elif query_left.relevance_score < query_right.relevance_score: elif query_left.relevance_score < query_right.relevance_score:
labels.append(1) labels.append([1])
docpairs.append([ docpairs.append([
np.array(query_right.feature_vector), np.array(query_right.feature_vector),
np.array(query_left.feature_vector) np.array(query_left.feature_vector)
]) ])
for label, pair in zip(labels, docpairs): for label, pair in zip(labels, docpairs):
yield label, pair[0], pair[1] yield np.array(label), pair[0], pair[1]
def gen_list(querylist): def gen_list(querylist):
......
...@@ -9,8 +9,6 @@ There are: ...@@ -9,8 +9,6 @@ There are:
* BeginPass * BeginPass
* EndPass * EndPass
""" """
import py_paddle.swig_paddle as api
__all__ = [ __all__ = [
'EndIteration', 'BeginIteration', 'BeginPass', 'EndPass', 'TestResult' 'EndIteration', 'BeginIteration', 'BeginPass', 'EndPass', 'TestResult'
] ]
...@@ -18,6 +16,7 @@ __all__ = [ ...@@ -18,6 +16,7 @@ __all__ = [
class WithMetric(object): class WithMetric(object):
def __init__(self, evaluator): def __init__(self, evaluator):
import py_paddle.swig_paddle as api
if not isinstance(evaluator, api.Evaluator): if not isinstance(evaluator, api.Evaluator):
raise TypeError("Evaluator should be api.Evaluator type") raise TypeError("Evaluator should be api.Evaluator type")
self.__evaluator__ = evaluator self.__evaluator__ = evaluator
......
import paddle.v2.framework.core as core
import paddle.v2.framework.proto.op_proto_pb2 as op_proto_pb2
import paddle.v2.framework.proto.op_desc_pb2 as op_desc_pb2
import paddle.v2.framework.proto.attr_type_pb2 as attr_type_pb2
import cStringIO
def get_all_op_protos():
"""
Get all registered op proto from Paddle C++
:return: list of OpProto
"""
protostrs = core.get_all_op_protos()
ret_values = []
for pbstr in protostrs:
op_proto = op_proto_pb2.OpProto.FromString(str(pbstr))
ret_values.append(op_proto)
return ret_values
class OpDescCreationMethod(object):
"""
A Functor object to convert user input(use key word args) to OpDesc based on
OpProto.
:param op_proto: The OpProto object.
:type op_proto: op_proto_pb2.OpProto
"""
def __init__(self, op_proto):
if not isinstance(op_proto, op_proto_pb2.OpProto):
raise TypeError("Argument should be OpProto")
self.__op_proto__ = op_proto
def __call__(self, *args, **kwargs):
"""
Convert user input to OpDesc. Only key-word args are supported.
:return: OpDesc based on user input
:rtype: op_desc_pb2.OpDesc
"""
if len(args) != 0:
raise ValueError("Only keyword arguments is supported by Paddle")
op_desc = op_desc_pb2.OpDesc()
# Inputs
ipts, ipt_format, _ = OpDescCreationMethod.extract_input_or_output(
"input", kwargs, self.__op_proto__.inputs)
op_desc.inputs.extend(ipts)
if ipt_format is not None:
op_desc.attrs.extend([ipt_format])
# Outputs
outs, out_format, tmp_index = OpDescCreationMethod.extract_input_or_output(
"output", kwargs, self.__op_proto__.outputs)
op_desc.outputs.extend(outs)
if out_format is not None:
op_desc.attrs.extend([out_format])
if len(tmp_index) != 0:
tmp_index_attr = op_desc.attrs.add()
tmp_index_attr.type = attr_type_pb2.INTS
tmp_index_attr.name = "temporary_index"
tmp_index_attr.ints.extend(tmp_index)
# Types
op_desc.type = self.__op_proto__.type
# Attrs
for attr in self.__op_proto__.attrs:
if attr.generated:
continue
user_defined_attr = kwargs.get(attr.name, None)
if user_defined_attr is not None:
new_attr = op_desc.attrs.add()
new_attr.name = attr.name
new_attr.type = attr.type
if attr.type == attr_type_pb2.INT:
new_attr.i = user_defined_attr
elif attr.type == attr_type_pb2.FLOAT:
new_attr.f = user_defined_attr
elif attr.type == attr_type_pb2.STRING:
new_attr.s = user_defined_attr
elif attr.type == attr_type_pb2.INTS:
new_attr.ints.extend(user_defined_attr)
elif attr.type == attr_type_pb2.FLOATS:
new_attr.floats.extend(user_defined_attr)
elif attr.type == attr_type_pb2.STRINGS:
new_attr.strings.extend(user_defined_attr)
else:
raise NotImplementedError("Not support attribute type " +
attr.type)
return op_desc
@staticmethod
def extract_input_or_output(in_out, kwargs, meta):
"""
Extract input variable names or output variable names from key-word
arguments, which base on VarProtos.
:param in_out: "input" or "output"
:param kwargs: key-word arguments that user inputted.
:param meta: a list of VarProto
:return: The three object will be return. The variable names. The
input_format or output_format attribute(None if the input or output is
not multiple). The temporary variable index list.
"""
multiple = OpDescCreationMethod.any_is_true((m.multiple for m in meta))
tmp_index = []
retv = []
if multiple:
var_format = op_desc_pb2.AttrDesc()
var_format.type = attr_type_pb2.INTS
var_format.name = "%s_format" % in_out
var_format.ints.append(0)
for var in meta:
var_name = var.name
if var.temporary:
var_name = [core.var_names.temp()]
tmp_index.append(len(retv))
else:
var_name = kwargs.get(var_name, [])
if not isinstance(var_name, list):
var_name = [var_name]
retv.extend(var_name)
var_format.ints.append(len(var_name) + var_format.ints[-1])
return retv, var_format, tmp_index
else:
for var in meta:
if var.temporary:
retv.append(kwargs.get(var.name, core.var_names.temp()))
tmp_index.append(len(retv))
else:
retv.append(kwargs.get(var.name, core.var_names.empty()))
return retv, None, tmp_index
@staticmethod
def any_is_true(generator):
"""
Reduce a bool array to one. If any of them is True, then return True.
"""
for flag in generator:
if flag:
return True
return False
def get_docstring_from_op_proto(op_proto):
"""
Generate docstring from a OpProto
:param op_proto: a OpProto instance.
:type op_proto: op_proto_pb2.OpProto
:return: docstring
"""
if not isinstance(op_proto, op_proto_pb2.OpProto):
raise TypeError("Input must be OpProto")
f = cStringIO.StringIO()
f.write(op_proto.comment)
f.write("\n")
def __append_param__(name, comment, type):
# Maybe replace the following line with template engine is better.
f.write(":param ")
f.write(name)
f.write(": ")
f.write(comment)
f.write("\n")
f.write(":type ")
f.write(name)
f.write(": ")
f.write(type)
f.write("\n")
for ipt in op_proto.inputs:
__append_param__(ipt.name, ipt.comment, "list | basestr"
if ipt.multiple else "basestr")
temp_var_prefix = \
"This is a temporary variable. It does not have to set by user. "
for opt in op_proto.outputs:
__append_param__(opt.name, opt.comment if not opt.temporary else
temp_var_prefix + opt.comment, "list | basestr"
if opt.multiple else "basestr")
for attr in op_proto.attrs:
attr_type = None
if attr.type == attr_type_pb2.INT:
attr_type = "int"
elif attr.type == attr_type_pb2.FLOAT:
attr_type = "float"
elif attr.type == attr_type_pb2.STRING:
attr_type = "basestr"
elif attr.type == attr_type_pb2.INTS:
attr_type = "list of int"
elif attr.type == attr_type_pb2.FLOATS:
attr_type = "list of float"
elif attr.type == attr_type_pb2.STRINGS:
attr_type = "list of basestr"
if attr_type is None:
raise RuntimeError("Not supported attribute type " + attr.type)
__append_param__(attr.name, attr.comment, attr_type)
return f.getvalue()
def create_op_creation_method(op_proto):
"""
Generate op creation method for an OpProto
"""
method = OpDescCreationMethod(op_proto)
def __impl__(*args, **kwargs):
opdesc = method(*args, **kwargs)
return core.Operator.create(opdesc.SerializeToString())
__impl__.__doc__ = get_docstring_from_op_proto(op_proto)
return __impl__
class OpCreationsHolder(object):
"""
A object will holds all op creation methods.
Use `op_creations.xxx_op` to access them.
"""
pass
op_creations = OpCreationsHolder()
def __bootstrap__():
"""
Bootstrap function for this module. It will dynamic create all op creation
methods in runtime.
"""
for op_proto in get_all_op_protos():
func = create_op_creation_method(op_proto)
func.__name__ = str(op_proto.type)
setattr(op_creations, func.__name__, func)
__bootstrap__()
add_python_test(test_framework test_protobuf.py test_scope.py add_python_test(test_framework test_protobuf.py test_scope.py
test_default_scope_funcs.py) test_default_scope_funcs.py test_op_creation_methods.py)
import unittest
import paddle.v2.framework.create_op_creation_methods as creation
import paddle.v2.framework.core as core
import paddle.v2.framework.proto.op_proto_pb2 as op_proto_pb2
import paddle.v2.framework.proto.op_desc_pb2 as op_desc_pb2
import paddle.v2.framework.proto.attr_type_pb2 as attr_type_pb2
class TestGetAllProtos(unittest.TestCase):
def test_all(self):
all_protos = creation.get_all_op_protos()
self.assertNotEqual(0, len(all_protos))
for each in all_protos:
self.assertTrue(each.IsInitialized())
class TestOpDescCreationMethod(unittest.TestCase):
def test_plain_input_output(self):
op = op_proto_pb2.OpProto()
op.type = "test"
ipt = op.inputs.add()
ipt.name = "X"
ipt.comment = "not matter"
ipt = op.inputs.add()
ipt.name = "Y"
ipt.comment = "not matter"
opt = op.outputs.add()
opt.name = "Z"
opt.comment = "not matter"
op.comment = "not matter"
self.assertTrue(op.IsInitialized())
method = creation.OpDescCreationMethod(op)
output = method(X="a", Y="b", Z="c")
expected = op_desc_pb2.OpDesc()
expected.type = "test"
expected.inputs.extend(["a", "b"])
expected.outputs.append("c")
self.assertEqual(expected, output)
def test_multiple_input_plain_output(self):
op = op_proto_pb2.OpProto()
op.type = "fc"
ipt = op.inputs.add()
ipt.name = "X"
ipt.comment = ""
ipt.multiple = True
ipt = op.inputs.add()
ipt.name = "W"
ipt.comment = ""
ipt.multiple = True
ipt = op.inputs.add()
ipt.name = "b"
ipt.comment = ""
out = op.outputs.add()
out.name = "Y"
out.comment = ""
op.comment = ""
self.assertTrue(op.IsInitialized())
method = creation.OpDescCreationMethod(op)
generated1 = method(X="x", W="w", b="b", Y="y")
expected1 = op_desc_pb2.OpDesc()
expected1.inputs.extend(['x', 'w', 'b'])
expected1.outputs.extend(['y'])
expected1.type = 'fc'
attr = expected1.attrs.add()
attr.name = 'input_format'
attr.type = attr_type_pb2.INTS
attr.ints.extend([0, 1, 2, 3])
self.assertEqual(expected1, generated1)
generated2 = method(
X=['x1', 'x2', 'x3'], b='b', W=['w1', 'w2', 'w3'], Y='y')
expected2 = op_desc_pb2.OpDesc()
expected2.inputs.extend(['x1', 'x2', 'x3', 'w1', 'w2', 'w3', 'b'])
expected2.outputs.extend(['y'])
expected2.type = 'fc'
attr = expected2.attrs.add()
attr.name = 'input_format'
attr.type = attr_type_pb2.INTS
attr.ints.extend([0, 3, 6, 7])
self.assertEqual(expected2, generated2)
def test_attrs(self):
op = op_proto_pb2.OpProto()
op.type = "test"
ipt = op.inputs.add()
ipt.name = 'X'
ipt.comment = ""
def __add_attr__(name, type):
attr = op.attrs.add()
attr.name = name
attr.comment = ""
attr.type = type
__add_attr__("int_attr", attr_type_pb2.INT)
__add_attr__("float_attr", attr_type_pb2.FLOAT)
__add_attr__("string_attr", attr_type_pb2.STRING)
__add_attr__("ints_attr", attr_type_pb2.INTS)
__add_attr__("floats_attr", attr_type_pb2.FLOATS)
__add_attr__("strings_attr", attr_type_pb2.STRINGS)
op.comment = ""
self.assertTrue(op.IsInitialized())
method = creation.OpDescCreationMethod(op)
generated = method(
X="a",
int_attr=10,
float_attr=3.2,
string_attr="test_str",
ints_attr=[0, 1, 2, 3, 4],
floats_attr=[0.2, 3.2, 4.5],
strings_attr=["a", "b", "c"])
expected = op_desc_pb2.OpDesc()
expected.type = "test"
expected.inputs.extend(['a'])
attr = expected.attrs.add()
attr.name = "int_attr"
attr.type = attr_type_pb2.INT
attr.i = 10
attr = expected.attrs.add()
attr.name = "float_attr"
attr.type = attr_type_pb2.FLOAT
attr.f = 3.2
attr = expected.attrs.add()
attr.name = "string_attr"
attr.type = attr_type_pb2.STRING
attr.s = "test_str"
attr = expected.attrs.add()
attr.name = "ints_attr"
attr.type = attr_type_pb2.INTS
attr.ints.extend([0, 1, 2, 3, 4])
attr = expected.attrs.add()
attr.name = 'floats_attr'
attr.type = attr_type_pb2.FLOATS
attr.floats.extend([0.2, 3.2, 4.5])
attr = expected.attrs.add()
attr.name = 'strings_attr'
attr.type = attr_type_pb2.STRINGS
attr.strings.extend(['a', 'b', 'c'])
self.assertEqual(expected, generated)
def test_input_temporary_output(self):
op = op_proto_pb2.OpProto()
op.type = "test"
out = op.outputs.add()
out.name = "OUT"
out.comment = ""
out = op.outputs.add()
out.name = "TMP"
out.comment = ""
out.temporary = True
out = op.outputs.add()
out.name = "OUT2"
out.comment = ""
op.comment = ""
method = creation.OpDescCreationMethod(op)
generated = method(OUT="a", OUT2="b")
desc = op_desc_pb2.OpDesc()
desc.outputs.extend(["a", core.var_names.temp(), "b"])
desc.type = "test"
attr = desc.attrs.add()
attr.name = "temporary_index"
attr.type = attr_type_pb2.INTS
attr.ints.append(2)
self.assertEqual(generated, desc)
class TestOpCreationDocStr(unittest.TestCase):
def test_all(self):
op = op_proto_pb2.OpProto()
op.type = "test"
op.comment = """Test Op.
This op is used for unit test, not a real op.
"""
a = op.inputs.add()
a.name = "a"
a.comment = "Input a for test op"
a.multiple = True
b = op.inputs.add()
b.name = "b"
b.comment = "Input b for test op"
self.assertTrue(op.IsInitialized())
o1 = op.outputs.add()
o1.name = "output"
o1.comment = "The output of test op"
o2 = op.outputs.add()
o2.name = "temp output"
o2.comment = "The temporary output of test op"
o2.temporary = True
test_str = op.attrs.add()
test_str.name = "str_attr"
test_str.type = attr_type_pb2.STRING
test_str.comment = "A string attribute for test op"
actual = creation.get_docstring_from_op_proto(op)
expected_docstring = '''Test Op.
This op is used for unit test, not a real op.
:param a: Input a for test op
:type a: list | basestr
:param b: Input b for test op
:type b: basestr
:param output: The output of test op
:type output: basestr
:param temp output: This is a temporary variable. It does not have to set by user. The temporary output of test op
:type temp output: basestr
:param str_attr: A string attribute for test op
:type str_attr: basestr
'''
self.assertEqual(expected_docstring, actual)
class TestOpCreations(unittest.TestCase):
def test_all(self):
add_op = creation.op_creations.add_two(X="a", Y="b", Out="z")
self.assertIsNotNone(add_op)
# Invoke C++ DebugString()
self.assertEqual('Op(add_two), inputs:(a, b), outputs:(z).',
str(add_op))
if __name__ == "__main__":
unittest.main()
import numpy import numpy
import py_paddle.swig_paddle as api
import collections import collections
import topology import topology
import minibatch import minibatch
from data_feeder import DataFeeder
__all__ = ['infer', 'Inference'] __all__ = ['infer', 'Inference']
...@@ -28,6 +26,7 @@ class Inference(object): ...@@ -28,6 +26,7 @@ class Inference(object):
""" """
def __init__(self, output_layer, parameters): def __init__(self, output_layer, parameters):
import py_paddle.swig_paddle as api
topo = topology.Topology(output_layer) topo = topology.Topology(output_layer)
gm = api.GradientMachine.createFromConfigProto( gm = api.GradientMachine.createFromConfigProto(
topo.proto(), api.CREATE_MODE_TESTING, [api.PARAMETER_VALUE]) topo.proto(), api.CREATE_MODE_TESTING, [api.PARAMETER_VALUE])
...@@ -40,6 +39,7 @@ class Inference(object): ...@@ -40,6 +39,7 @@ class Inference(object):
self.__data_types__ = topo.data_type() self.__data_types__ = topo.data_type()
def iter_infer(self, input, feeding=None): def iter_infer(self, input, feeding=None):
from data_feeder import DataFeeder
feeder = DataFeeder(self.__data_types__, feeding) feeder = DataFeeder(self.__data_types__, feeding)
batch_size = len(input) batch_size = len(input)
......
...@@ -10,8 +10,9 @@ class client(object): ...@@ -10,8 +10,9 @@ class client(object):
client is a client to the master server. client is a client to the master server.
""" """
def __init__(self, addr, buf_size): def __init__(self, etcd_endpoints, timeout, buf_size):
self.c = lib.paddle_new_master_client(addr, buf_size) self.c = lib.paddle_new_etcd_master_client(etcd_endpoints, timeout,
buf_size)
def close(self): def close(self):
lib.paddle_release_master_client(self.c) lib.paddle_release_master_client(self.c)
......
import py_paddle.swig_paddle as swig_api
import paddle.trainer_config_helpers.config_parser_utils as config_parser_utils import paddle.trainer_config_helpers.config_parser_utils as config_parser_utils
import paddle.trainer_config_helpers.optimizers as v1_optimizers import paddle.trainer_config_helpers.optimizers as v1_optimizers
""" """
...@@ -18,6 +16,7 @@ __all__ = [ ...@@ -18,6 +16,7 @@ __all__ = [
class Optimizer(object): class Optimizer(object):
def __init__(self, **kwargs): def __init__(self, **kwargs):
import py_paddle.swig_paddle as swig_api
if 'batch_size' in kwargs: if 'batch_size' in kwargs:
del kwargs['batch_size'] # not important for python library. del kwargs['batch_size'] # not important for python library.
...@@ -36,23 +35,27 @@ class Optimizer(object): ...@@ -36,23 +35,27 @@ class Optimizer(object):
For each optimizer(SGD, Adam), GradientMachine should enable different For each optimizer(SGD, Adam), GradientMachine should enable different
buffers. buffers.
""" """
import py_paddle.swig_paddle as swig_api
tmp = swig_api.ParameterOptimizer.create(self.__opt_conf__) tmp = swig_api.ParameterOptimizer.create(self.__opt_conf__)
assert isinstance(tmp, swig_api.ParameterOptimizer) assert isinstance(tmp, swig_api.ParameterOptimizer)
return tmp.getParameterTypes() return tmp.getParameterTypes()
def __create_local_updater__(self): def __create_local_updater__(self):
import py_paddle.swig_paddle as swig_api
return swig_api.ParameterUpdater.createLocalUpdater(self.__opt_conf__) return swig_api.ParameterUpdater.createLocalUpdater(self.__opt_conf__)
def __create_remote_updater__(self, pass_num, use_sparse_updater): def __create_remote_updater__(self, pass_num, use_sparse_updater):
import py_paddle.swig_paddle as swig_api
return swig_api.ParameterUpdater.createRemoteUpdater( return swig_api.ParameterUpdater.createRemoteUpdater(
self.__opt_conf__, pass_num, use_sparse_updater) self.__opt_conf__, pass_num, use_sparse_updater)
def __create_new_remote_updater__(self, pserver_spec): def __create_new_remote_updater__(self, pserver_spec, use_etcd):
import py_paddle.swig_paddle as swig_api
return swig_api.ParameterUpdater.createNewRemoteUpdater( return swig_api.ParameterUpdater.createNewRemoteUpdater(
self.__opt_conf__, pserver_spec) self.__opt_conf__, pserver_spec, use_etcd)
def create_updater(self, is_local, num_passes, use_sparse_updater, def create_updater(self, is_local, num_passes, use_sparse_updater,
pserver_spec): pserver_spec, use_etcd):
""" """
create proper parameter_updater by configuration. create proper parameter_updater by configuration.
:param is_local: create local or remote parameter updater :param is_local: create local or remote parameter updater
...@@ -78,7 +81,7 @@ class Optimizer(object): ...@@ -78,7 +81,7 @@ class Optimizer(object):
num_passes, use_sparse_updater) num_passes, use_sparse_updater)
else: else:
parameter_updater = self.__create_new_remote_updater__( parameter_updater = self.__create_new_remote_updater__(
pserver_spec) pserver_spec, use_etcd)
return parameter_updater return parameter_updater
...@@ -268,6 +271,7 @@ ModelAverage = v1_optimizers.ModelAverage ...@@ -268,6 +271,7 @@ ModelAverage = v1_optimizers.ModelAverage
L2Regularization = v1_optimizers.L2Regularization L2Regularization = v1_optimizers.L2Regularization
if __name__ == '__main__': if __name__ == '__main__':
import py_paddle.swig_paddle as swig_api
swig_api.initPaddle('--use_gpu=false') swig_api.initPaddle('--use_gpu=false')
for opt in [ for opt in [
Momentum(), Adam(), Adamax(), AdaGrad(), DecayedAdaGrad(), Momentum(), Adam(), Adamax(), AdaGrad(), DecayedAdaGrad(),
......
import numpy as np import numpy as np
import py_paddle.swig_paddle as api
from paddle.proto.ParameterConfig_pb2 import ParameterConfig from paddle.proto.ParameterConfig_pb2 import ParameterConfig
import paddle.trainer.config_parser as cp import paddle.trainer.config_parser as cp
import struct import struct
...@@ -124,6 +123,7 @@ class Parameters(object): ...@@ -124,6 +123,7 @@ class Parameters(object):
:return: parameter value :return: parameter value
:rtype: np.ndarray :rtype: np.ndarray
""" """
import py_paddle.swig_paddle as api
shape = self.get_shape(key) shape = self.get_shape(key)
if len(self.__gradient_machines__) == 0: if len(self.__gradient_machines__) == 0:
...@@ -223,7 +223,7 @@ class Parameters(object): ...@@ -223,7 +223,7 @@ class Parameters(object):
:type gradient_machine: api.GradientMachine :type gradient_machine: api.GradientMachine
:return: :return:
""" """
import py_paddle.swig_paddle as api
if not isinstance(gradient_machine, api.GradientMachine): if not isinstance(gradient_machine, api.GradientMachine):
raise ValueError("gradient_machine should be api.GradientMachine") raise ValueError("gradient_machine should be api.GradientMachine")
...@@ -359,6 +359,7 @@ def __copy_parameter_to_gradient_machine__(gradient_machine, name, arr): ...@@ -359,6 +359,7 @@ def __copy_parameter_to_gradient_machine__(gradient_machine, name, arr):
:return: :return:
:rtype: api.Parameter :rtype: api.Parameter
""" """
import py_paddle.swig_paddle as api
param = __get_parameter_in_gradient_machine__(gradient_machine, name) param = __get_parameter_in_gradient_machine__(gradient_machine, name)
vec = param.getBuf(api.PARAMETER_VALUE) vec = param.getBuf(api.PARAMETER_VALUE)
assert isinstance(vec, api.Vector) assert isinstance(vec, api.Vector)
......
...@@ -2,12 +2,6 @@ ...@@ -2,12 +2,6 @@
Module Trainer Module Trainer
""" """
import collections import collections
import gzip
import os
import py_paddle.swig_paddle as api
from data_feeder import DataFeeder
from topology import Topology from topology import Topology
from . import event as v2_event from . import event as v2_event
from . import optimizer as v2_optimizer from . import optimizer as v2_optimizer
...@@ -51,7 +45,8 @@ class SGD(object): ...@@ -51,7 +45,8 @@ class SGD(object):
update_equation, update_equation,
extra_layers=None, extra_layers=None,
is_local=True, is_local=True,
pserver_spec=None): pserver_spec=None,
use_etcd=True):
if not isinstance(parameters, v2_parameters.Parameters): if not isinstance(parameters, v2_parameters.Parameters):
raise TypeError('parameters should be parameters') raise TypeError('parameters should be parameters')
...@@ -59,6 +54,7 @@ class SGD(object): ...@@ -59,6 +54,7 @@ class SGD(object):
if not isinstance(update_equation, v2_optimizer.Optimizer): if not isinstance(update_equation, v2_optimizer.Optimizer):
raise TypeError("update equation parameter must be " raise TypeError("update equation parameter must be "
"paddle.v2.optimizer.Optimizer") "paddle.v2.optimizer.Optimizer")
import py_paddle.swig_paddle as api
topology = Topology(cost, extra_layers=extra_layers) topology = Topology(cost, extra_layers=extra_layers)
self.__optimizer__ = update_equation self.__optimizer__ = update_equation
self.__topology__ = topology self.__topology__ = topology
...@@ -66,6 +62,7 @@ class SGD(object): ...@@ -66,6 +62,7 @@ class SGD(object):
self.__topology_in_proto__ = topology.proto() self.__topology_in_proto__ = topology.proto()
self.__is_local__ = is_local self.__is_local__ = is_local
self.__pserver_spec__ = pserver_spec self.__pserver_spec__ = pserver_spec
self.__use_etcd__ = use_etcd
self.__use_sparse_updater__ = self.__topology__.use_sparse_updater() self.__use_sparse_updater__ = self.__topology__.use_sparse_updater()
# # In local mode, disable sparse_remote_update. # # In local mode, disable sparse_remote_update.
...@@ -124,13 +121,15 @@ class SGD(object): ...@@ -124,13 +121,15 @@ class SGD(object):
:type feeding: dict|list :type feeding: dict|list
:return: :return:
""" """
import py_paddle.swig_paddle as api
from data_feeder import DataFeeder
if event_handler is None: if event_handler is None:
event_handler = default_event_handler event_handler = default_event_handler
__check_train_args__(**locals()) __check_train_args__(**locals())
self.__parameter_updater__ = self.__optimizer__.create_updater( self.__parameter_updater__ = self.__optimizer__.create_updater(
self.__is_local__, num_passes, self.__use_sparse_updater__, self.__is_local__, num_passes, self.__use_sparse_updater__,
self.__pserver_spec__) self.__pserver_spec__, self.__use_etcd__)
self.__parameter_updater__.init(self.__gradient_machine__) self.__parameter_updater__.init(self.__gradient_machine__)
self.__gradient_machine__.start() self.__gradient_machine__.start()
...@@ -187,6 +186,8 @@ class SGD(object): ...@@ -187,6 +186,8 @@ class SGD(object):
:type feeding: dict :type feeding: dict
:return: :return:
""" """
import py_paddle.swig_paddle as api
from data_feeder import DataFeeder
feeder = DataFeeder(self.__data_types__, feeding) feeder = DataFeeder(self.__data_types__, feeding)
evaluator = self.__gradient_machine__.makeEvaluator() evaluator = self.__gradient_machine__.makeEvaluator()
out_args = api.Arguments.createArguments(0) out_args = api.Arguments.createArguments(0)
......
...@@ -19,7 +19,8 @@ setup_requires=["requests", ...@@ -19,7 +19,8 @@ setup_requires=["requests",
"recordio", "recordio",
"matplotlib", "matplotlib",
"rarfile", "rarfile",
"scipy>=0.19.0"] "scipy>=0.19.0",
"nltk"]
if '${CMAKE_SYSTEM_PROCESSOR}' not in ['arm', 'armv7-a', 'aarch64']: if '${CMAKE_SYSTEM_PROCESSOR}' not in ['arm', 'armv7-a', 'aarch64']:
setup_requires+=["opencv-python"] setup_requires+=["opencv-python"]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册
反馈
建议
客服 返回
顶部