diff --git a/Dockerfile b/Dockerfile index ed5910d93b41dba8d50b2ba01c59c635797edd29..8cfb16928c95dcbfac08383d32562ff67933d873 100644 --- a/Dockerfile +++ b/Dockerfile @@ -25,7 +25,7 @@ COPY ./paddle/scripts/docker/root/ /root/ RUN apt-get update && \ apt-get install -y \ git python-pip python-dev openssh-server bison \ - wget unzip tar xz-utils bzip2 gzip coreutils ntp \ + wget unzip unrar tar xz-utils bzip2 gzip coreutils ntp \ curl sed grep graphviz libjpeg-dev zlib1g-dev \ python-numpy python-matplotlib gcc g++ \ automake locales clang-format-3.8 swig doxygen cmake \ diff --git a/Dockerfile.android b/Dockerfile.android index fa24f6f06c4e76444c83bcf13fe312afdcb6c348..c0fa58c384f9ebcae60477ffce49ea4ffa929db9 100644 --- a/Dockerfile.android +++ b/Dockerfile.android @@ -14,6 +14,17 @@ RUN apt-get update && \ wget curl tar unzip gcc g++ locales clang-format-3.8 swig cmake && \ apt-get clean -y +# Install Go and glide +RUN wget -O go.tgz https://storage.googleapis.com/golang/go1.8.1.linux-amd64.tar.gz && \ + tar -C /usr/local -xzf go.tgz && \ + mkdir /root/gopath && \ + mkdir /root/gopath/bin && \ + mkdir /root/gopath/src && \ + rm go.tgz +ENV GOROOT=/usr/local/go GOPATH=/root/gopath +# should not be in the same line with GOROOT definition, otherwise docker build could not find GOROOT. +ENV PATH=${PATH}:${GOROOT}/bin:${GOPATH}/bin + # git credential to skip password typing RUN git config --global credential.helper store diff --git a/cmake/cross_compiling/android.cmake b/cmake/cross_compiling/android.cmake index dcfbc5d0129d7763daaf17c33d2b7791e87d3018..5e3e437a8da9624df35a5c754fe77be73f20361d 100644 --- a/cmake/cross_compiling/android.cmake +++ b/cmake/cross_compiling/android.cmake @@ -108,6 +108,7 @@ IF("${CMAKE_VERSION}" VERSION_LESS "3.7.0") ENDIF() IF(ANDROID_ABI STREQUAL "arm64-v8a") SET(ANDROID_TOOLCHAIN_NAME aarch64-linux-android) + SET(CMAKE_SYSTEM_PROCESSOR aarch64) ENDIF() SET(ANDROID_TOOLCHAIN_PREFIX "${ANDROID_TOOLCHAIN_ROOT}/bin/${ANDROID_TOOLCHAIN_NAME}-") ENDIF() @@ -166,7 +167,7 @@ IF("${CMAKE_VERSION}" VERSION_LESS "3.7.0") ENDIF() IF(ANDROID_ABI STREQUAL "arm64-v8a") - LIST(APPEND ANDROID_COMPILER_FLAGS -march=armv8-a) + LIST(APPEND ANDROID_COMPILER_FLAGS -march=armv8-a) ENDIF() STRING(REPLACE ";" " " ANDROID_COMPILER_FLAGS "${ANDROID_COMPILER_FLAGS}") @@ -193,6 +194,10 @@ ELSE() SET(CMAKE_ANDROID_STANDALONE_TOOLCHAIN ${ANDROID_STANDALONE_TOOLCHAIN}) ENDIF() SET(CMAKE_ANDROID_ARCH_ABI ${ANDROID_ABI}) - SET(CMAKE_ANDROID_ARM_MODE ${ANDROID_ARM_MODE}) - SET(CMAKE_ANDROID_ARM_NEON ${ANDROID_ARM_NEON}) + IF(ANDROID_ABI MATCHES "^armeabi(-v7a)?$") + SET(CMAKE_ANDROID_ARM_MODE ${ANDROID_ARM_MODE}) + IF(ANDROID_ABI STREQUAL "armeabi-v7a") + SET(CMAKE_ANDROID_ARM_NEON ${ANDROID_ARM_NEON}) + ENDIF() + ENDIF() ENDIF() diff --git a/go/cmd/master/master.go b/go/cmd/master/master.go index 54fa254863156455f66fa87de9077042a45f9735..9eaf8c04ae01fe7eebc92c51803bfcf977995ee3 100644 --- a/go/cmd/master/master.go +++ b/go/cmd/master/master.go @@ -11,6 +11,7 @@ import ( "github.com/namsral/flag" log "github.com/sirupsen/logrus" + "github.com/topicai/candy" "github.com/PaddlePaddle/Paddle/go/master" "github.com/PaddlePaddle/Paddle/go/utils/networkhelper" @@ -20,11 +21,18 @@ func main() { port := flag.Int("port", 8080, "port of the master server.") ttlSec := flag.Int("ttl", 60, "etcd lease TTL in seconds.") endpoints := flag.String("endpoints", "http://127.0.0.1:2379", "comma separated etcd endpoints. If empty, fault tolerance will not be enabled.") - taskTimeoutDur := flag.Duration("task_timout_dur", 20*time.Minute, "task timout duration.") - taskTimeoutMax := flag.Int("task_timeout_max", 3, "max timtout count for each task before it being declared failed task.") - chunkPerTask := flag.Int("chunk_per_task", 10, "chunk per task.") + taskTimeoutDur := flag.Duration("task-timout-dur", 20*time.Minute, "task timout duration.") + taskTimeoutMax := flag.Int("task-timeout-max", 3, "max timtout count for each task before it being declared failed task.") + chunkPerTask := flag.Int("chunk-per-task", 10, "chunk per task.") + logLevel := flag.String("log-level", "info", + "log level, possible values: debug, info, warning, error, fatal, panic") flag.Parse() + level, e := log.ParseLevel(*logLevel) + candy.Must(e) + + log.SetLevel(level) + if *endpoints == "" { log.Warningln("-endpoints not set, fault tolerance not be enabled.") } diff --git a/go/cmd/pserver/pserver.go b/go/cmd/pserver/pserver.go index b331b8126cadc2c5df516fb241913415b2e3e73d..652d7ba315d72ff19931b82a4b0d1c30b2ff8f37 100644 --- a/go/cmd/pserver/pserver.go +++ b/go/cmd/pserver/pserver.go @@ -40,7 +40,7 @@ func main() { idx = *index } else { e = pserver.NewEtcdClient(*etcdEndpoint, *numPservers, *etcdTimeout) - idx, err = e.Register() + idx, err = e.Register(*port) candy.Must(err) cp, err = pserver.NewCheckpointFromFile(*checkpointPath, idx, e) diff --git a/go/master/client.go b/go/master/client.go index a2ca3f3ef8ce300e3df09a302d74b56ee23c6d10..de883bf4b9a3de8d6d6e35e8e808dcf7ba54cb46 100644 --- a/go/master/client.go +++ b/go/master/client.go @@ -2,6 +2,7 @@ package master import ( "os" + "time" "github.com/PaddlePaddle/Paddle/go/connection" "github.com/PaddlePaddle/recordio" @@ -36,9 +37,9 @@ func (c *Client) getRecords() { for { t, err := c.getTask() if err != nil { - // TODO(helin): wait before move on with next // getTask call. - log.Errorln(err) + log.Errorf("Get task failed, sleep 3 seconds and continue, %s", err) + time.Sleep(3 * time.Second) continue } diff --git a/go/master/service.go b/go/master/service.go index a6050ab99437244dade83f2943f6649453d47fff..9cef2270ce6a51425e40b9281f93f2f9c9981329 100644 --- a/go/master/service.go +++ b/go/master/service.go @@ -215,6 +215,7 @@ func readChunks(globPaths []string) ([]Chunk, error) { } count := index.NumChunks() + log.Infof("readChunks: file %s has %d chunks", path, count) for i := 0; i < count; i++ { chunk := Chunk{ Path: path, diff --git a/go/pserver/client/c/test/test_train.py b/go/pserver/client/c/test/test_train.py index d6922672f4c1253e62cfe54965f6c2f3b5e6c7bf..e9264592b4f18fddf68b198d73bf907206e77a3f 100644 --- a/go/pserver/client/c/test/test_train.py +++ b/go/pserver/client/c/test/test_train.py @@ -1,5 +1,23 @@ import paddle.v2 as paddle import paddle.v2.dataset.uci_housing as uci_housing +import paddle.v2.master as master +import os +import cPickle as pickle + +etcd_ip = os.getenv("MASTER_IP", "127.0.0.1") +etcd_endpoint = "http://" + etcd_ip + ":2379" + + +def cloud_reader(): + print "connecting to master, etcd endpoints: ", etcd_endpoint + master_client = master.client(etcd_endpoint, 5, 64) + master_client.set_dataset( + ["/pfs/dlnel/public/dataset/uci_housing/uci_housing-*-of-*"]) + while 1: + r, e = master_client.next_record() + if not r: + break + yield pickle.loads(r) def main(): @@ -22,13 +40,13 @@ def main(): # create optimizer of new remote updater to pserver optimizer = paddle.optimizer.Momentum(momentum=0) - #TODO(zhihong) : replace optimizer with new OptimizerConfig - + print "etcd endoint: ", etcd_endpoint trainer = paddle.trainer.SGD(cost=cost, parameters=parameters, update_equation=optimizer, is_local=False, - pserver_spec="localhost:3000") + pserver_spec=etcd_endpoint, + use_etcd=True) # event_handler to print training and testing info def event_handler(event): @@ -47,11 +65,11 @@ def main(): print "Test %d, %.2f" % (event.pass_id, result.cost) # training + # NOTE: use uci_housing.train() as reader for non-paddlecloud training trainer.train( reader=paddle.batch( paddle.reader.shuffle( - uci_housing.train(), buf_size=500), - batch_size=2), + cloud_reader, buf_size=500), batch_size=2), feeding={'x': 0, 'y': 1}, event_handler=event_handler, diff --git a/go/pserver/client/etcd_client.go b/go/pserver/client/etcd_client.go index 1fd3479aa88ccbbe7c5067da1e9886b65352e847..8eb2a4f4511fc7139a55a2cd47ad73a82137b260 100644 --- a/go/pserver/client/etcd_client.go +++ b/go/pserver/client/etcd_client.go @@ -12,6 +12,7 @@ import ( ) const ( + // DefaultEtcdTimeout is the default etcd timeout DefaultEtcdTimeout time.Duration = 5 * time.Second ) @@ -66,12 +67,12 @@ func (p *EtcdClient) List() []Server { for { for i := 0; i < psDesired; i++ { ctx, cancel := context.WithTimeout(context.Background(), p.timeout) - cancel() psKey := pserver.PsPath + strconv.Itoa(i) log.Debugf("checking %s", psKey) resp, err := p.client.Get(ctx, psKey) + cancel() if err != nil { - log.Infof("Get psKey= %s error, %v", psKey, err) + log.Infof("Get psKey=%s error, %v", psKey, err) time.Sleep(p.timeout) continue } diff --git a/go/pserver/etcd_client.go b/go/pserver/etcd_client.go index 4a694b97f47b2ab85d1e109ef7545d104194b5cf..66af4fa0b483f1caea385df61e54d871072a0375 100644 --- a/go/pserver/etcd_client.go +++ b/go/pserver/etcd_client.go @@ -49,7 +49,7 @@ func NewEtcdClient(endpoints string, numPservers int, timeout time.Duration) *Et // Register registers the pserver on etcd // // Register returns the index of the current pserver. -func (e *EtcdClient) Register() (int, error) { +func (e *EtcdClient) Register(port int) (int, error) { var err error e.externalIP, err = networkhelper.GetExternalIP() @@ -116,7 +116,7 @@ func (e *EtcdClient) Register() (int, error) { for { ctx, cancel := context.WithTimeout(context.Background(), time.Second) var err error - pserverIdx, err = e.registerPserverEtcd(ctx) + pserverIdx, err = e.registerPserverEtcd(ctx, port) cancel() if err != nil { log.Warn(err) @@ -140,7 +140,7 @@ func (e *EtcdClient) initDesiredPservers(ctx context.Context, numPservers int) ( } // registerPserverEtcd registers pserver node on etcd using transaction. -func (e *EtcdClient) registerPserverEtcd(ctx context.Context) (int, error) { +func (e *EtcdClient) registerPserverEtcd(ctx context.Context, port int) (int, error) { var idx int _, err := concurrency.NewSTM(e.etcdClient, func(c concurrency.STM) error { registered := false @@ -156,8 +156,9 @@ func (e *EtcdClient) registerPserverEtcd(ctx context.Context) (int, error) { log.Fatal(err) } // find the first id and write info - c.Put(psKey, e.externalIP, clientv3.WithLease(resp.ID)) - log.Debugf("set pserver node %s with value %s", psKey, e.externalIP) + pserverAddr := e.externalIP + ":" + strconv.Itoa(port) + c.Put(psKey, pserverAddr, clientv3.WithLease(resp.ID)) + log.Debugf("set pserver node %s with value %s", psKey, pserverAddr) ch, kaerr := e.etcdClient.KeepAlive(context.TODO(), resp.ID) if kaerr != nil { log.Errorf("keepalive etcd node error: %v", kaerr) diff --git a/paddle/api/PaddleAPI.h b/paddle/api/PaddleAPI.h index 5fb3d1c73bc56e921f13aafd27c25224e259b3fe..0b9b83d42974151d49250bdf0e7c397f59bf6a62 100644 --- a/paddle/api/PaddleAPI.h +++ b/paddle/api/PaddleAPI.h @@ -843,7 +843,8 @@ public: bool useSparseUpdater); static ParameterUpdater* createNewRemoteUpdater( OptimizationConfig* config, - const std::string pserverSpec) throw(UnsupportError); + const std::string pserverSpec, + const bool useEtcd) throw(UnsupportError); ~ParameterUpdater(); /** diff --git a/paddle/api/ParameterUpdater.cpp b/paddle/api/ParameterUpdater.cpp index 1aaefdfb8107a2eaa0432211fd7df4f5f12d537f..5934cb898b5f6adc74c237b1733a7459d8437a28 100644 --- a/paddle/api/ParameterUpdater.cpp +++ b/paddle/api/ParameterUpdater.cpp @@ -33,11 +33,12 @@ ParameterUpdater *ParameterUpdater::createLocalUpdater( ParameterUpdater *ParameterUpdater::createNewRemoteUpdater( OptimizationConfig *config, - const std::string pserverSpec) throw(UnsupportError) { + const std::string pserverSpec, + const bool useEtcd) throw(UnsupportError) { #ifndef PADDLE_WITHOUT_GOLANG auto updater = new ParameterUpdater(); updater->m->updater.reset(new paddle::NewRemoteParameterUpdater( - config->m->getConfig(), pserverSpec)); + config->m->getConfig(), pserverSpec, useEtcd)); return updater; #else throw UnsupportError(); diff --git a/paddle/framework/CMakeLists.txt b/paddle/framework/CMakeLists.txt index b8bfab5320c3f98f7c019ad80a6cf4c3131777c4..e7d1c7203aa3422b3f5dab4a83da4e175219ba81 100644 --- a/paddle/framework/CMakeLists.txt +++ b/paddle/framework/CMakeLists.txt @@ -1,24 +1,29 @@ -# ddim lib +cc_library(enforce SRCS enforce.cc DEPS glog) +cc_test(enforce_test SRCS enforce_test.cc DEPS enforce) cc_library(ddim SRCS ddim.cc) cc_test(ddim_test SRCS ddim_test.cc DEPS ddim) nv_test(dim_test SRCS dim_test.cu DEPS ddim) -cc_test(tensor_test SRCS tensor_test.cc DEPS ddim place paddle_memory) +cc_library(tensor SRCS tensor.cc DEPS ddim place enforce paddle_memory) +cc_test(tensor_test SRCS tensor_test.cc DEPS tensor) cc_test(variable_test SRCS variable_test.cc) cc_test(scope_test SRCS scope_test.cc) -cc_test(enforce_test SRCS enforce_test.cc) proto_library(attr_type SRCS attr_type.proto) proto_library(op_proto SRCS op_proto.proto DEPS attr_type) cc_test(op_proto_test SRCS op_proto_test.cc DEPS op_proto protobuf) proto_library(op_desc SRCS op_desc.proto DEPS attr_type) cc_test(op_desc_test SRCS op_desc_test.cc DEPS op_desc protobuf) -cc_library(operator SRCS operator.cc DEPS op_desc device_context) + +cc_library(operator SRCS operator.cc DEPS op_desc device_context tensor) cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry) -cc_library(op_registry SRCS op_registry.cc DEPS op_proto op_desc) + +cc_library(op_registry SRCS op_registry.cc DEPS op_proto op_desc enforce) cc_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry operator) + py_proto_compile(framework_py_proto SRCS attr_type.proto op_proto.proto op_desc.proto) # Generate an empty __init__.py to make framework_py_proto as a valid python module. add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py) add_dependencies(framework_py_proto framework_py_proto_init) proto_library(net_proto SRCS net_proto.proto DEPS op_proto) -cc_library(net SRCS net.cc DEPS net_proto) +cc_library(net SRCS net.cc DEPS operator net_proto op_registry) +cc_test(net_op_test SRCS net_op_test.cc DEPS net) diff --git a/paddle/framework/ddim.cc b/paddle/framework/ddim.cc index 87a3618e095c544b422746ed3f497b21f3824fbd..73f5499ad15752237a73ca27e0cd0fe2c5e86b4e 100644 --- a/paddle/framework/ddim.cc +++ b/paddle/framework/ddim.cc @@ -13,6 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/framework/ddim.h" +#include "paddle/framework/enforce.h" namespace paddle { namespace framework { @@ -192,13 +193,56 @@ std::vector<int> vectorize(const DDim& ddim) { return result; } +struct ProductVisitor : public boost::static_visitor<ssize_t> { + template <int D> + ssize_t operator()(const Dim<D>& dim) { + return product(dim); + } +}; + ssize_t product(const DDim& ddim) { - ssize_t result = 1; - std::vector<int> v = vectorize(ddim); - for (auto i : v) { - result *= i; + ProductVisitor visitor; + return boost::apply_visitor(visitor, ddim); +} + +struct SliceVectorizeVisitor : public boost::static_visitor<> { + std::vector<int>& vector; + int begin; + int end; + + SliceVectorizeVisitor(std::vector<int>& v, int b, int e) + : vector(v), begin(b), end(e) { + PADDLE_ENFORCE(begin < end, + "Begin index must be less than end index in ddim slice."); + PADDLE_ENFORCE(begin >= 0, + "Begin index can't be less than zero in ddim slice."); } - return result; + + template <int S> + void operator()(const Dim<S>& dim) { + if (begin == 0) { + vector.push_back(dim.head); + } else { + --begin; + } + --end; + if (end > 0) { + this->operator()(dim.tail); + } + } + + void operator()(const Dim<1>& dim) { + PADDLE_ENFORCE(end == 1, "End index in ddim slice is out of bound."); + vector.push_back(dim.head); + } +}; + +DDim slice_ddim(const DDim& dim, int begin, int end) { + std::vector<int> vec; + vec.reserve(end - begin); + SliceVectorizeVisitor visitor(vec, begin, end); + boost::apply_visitor(visitor, dim); + return make_ddim(vec); } /// \cond HIDDEN diff --git a/paddle/framework/ddim.h b/paddle/framework/ddim.h index f8714acf320952b11a44016b1dfdc4f9ca9eb632..a0c2a8a74afdefd4a504ec6fa730238e077efbb5 100644 --- a/paddle/framework/ddim.h +++ b/paddle/framework/ddim.h @@ -81,6 +81,15 @@ std::vector<int> vectorize(const DDim& ddim); ssize_t product(const DDim& ddim); +/** + * \brief Slice a ddim + * + * Slice dim with [begin, end). + * e.g. DDim d = make_ddim({1,2,3,4,5}); + * slice_ddim(d, 1, 3); ====> {2,3} + */ +DDim slice_ddim(const DDim& dim, int begin, int end); + /** * \brief What is the length of this dimension? * diff --git a/paddle/framework/ddim_test.cc b/paddle/framework/ddim_test.cc index 36eef02370e0196c2af2c05f49176b70ce69235a..6a099f2aeb4aa117bca8695aa326fbd1272a43d6 100644 --- a/paddle/framework/ddim_test.cc +++ b/paddle/framework/ddim_test.cc @@ -52,6 +52,26 @@ TEST(DDim, Equality) { // product of a DDim EXPECT_EQ(paddle::framework::product(vddim), 45); + EXPECT_EQ( + paddle::framework::product(paddle::framework::make_ddim({3, 2, 5, 3})), + 90); + + // slice a DDim + paddle::framework::DDim ddim2 = + paddle::framework::make_ddim({1, 2, 3, 4, 5, 6}); + paddle::framework::DDim ss = paddle::framework::slice_ddim(ddim2, 2, 5); + EXPECT_EQ(arity(ss), 3); + EXPECT_EQ(ss[0], 3); + EXPECT_EQ(ss[1], 4); + EXPECT_EQ(ss[2], 5); + paddle::framework::DDim ss2 = paddle::framework::slice_ddim(ddim2, 0, 6); + EXPECT_EQ(arity(ss2), 6); + EXPECT_EQ(ss2[0], 1); + EXPECT_EQ(ss2[1], 2); + EXPECT_EQ(ss2[2], 3); + EXPECT_EQ(ss2[3], 4); + EXPECT_EQ(ss2[4], 5); + EXPECT_EQ(ss2[5], 6); } TEST(DDim, Print) { diff --git a/paddle/framework/dim_test.cu b/paddle/framework/dim_test.cu index 05217415196f3ec3ce9b5de7cb2f82c9de960ba7..3898d0a447aa502813b3cb5e86c29eebb814ff84 100644 --- a/paddle/framework/dim_test.cu +++ b/paddle/framework/dim_test.cu @@ -1,100 +1,101 @@ #include <thrust/device_vector.h> #include <sstream> -#include "paddle/framework/dim.h" #include "gtest/gtest.h" +#include "paddle/framework/dim.h" __global__ void test(paddle::framework::Dim<2>* o) { - o[0] = paddle::framework::make_dim(5, 6); + o[0] = paddle::framework::make_dim(5, 6); } __global__ void dyn_idx_gpu(int* o) { - auto d = paddle::framework::make_dim(5, 6); - o[0] = d[1]; + auto d = paddle::framework::make_dim(5, 6); + o[0] = d[1]; } TEST(Dim, Equality) { - // construct a Dim on the CPU - auto a = paddle::framework::make_dim(3, 4); - EXPECT_EQ(paddle::framework::get<0>(a), 3); - EXPECT_EQ(paddle::framework::get<1>(a), 4); - - // construct a Dim on the GPU - thrust::device_vector<paddle::framework::Dim<2>> t(2); - test<<<1,1>>>(thrust::raw_pointer_cast(t.data())); - a = t[0]; - EXPECT_EQ(paddle::framework::get<0>(a), 5); - EXPECT_EQ(paddle::framework::get<1>(a), 6); - - // linearization - auto b = paddle::framework::make_dim(7, 8); - EXPECT_EQ(paddle::framework::linearize(a, b), 83); - - // product - EXPECT_EQ(paddle::framework::product(a), 30); - - // mutate a Dim - paddle::framework::get<1>(b) = 10; - EXPECT_EQ(paddle::framework::get<0>(b), 7); - EXPECT_EQ(paddle::framework::get<1>(b), 10); - - // dynamic access - paddle::framework::get(b, 0) = 8; - b[1] = 11; - EXPECT_EQ(paddle::framework::get<0>(b), 8); - EXPECT_EQ(paddle::framework::get<1>(b), 11); - EXPECT_EQ(paddle::framework::get(b, 0), 8); - EXPECT_EQ(b[1], 11); - - // dynamic access on GPU - thrust::device_vector<int> r(1); - dyn_idx_gpu<<<1,1>>>(thrust::raw_pointer_cast(r.data())); - int res = r[0]; - EXPECT_EQ(res, 6); - - // ex_prefix_mul - paddle::framework::Dim<3> c = paddle::framework::ex_prefix_mul(paddle::framework::Dim<3>(3, 4, 5)); - EXPECT_EQ(paddle::framework::get<0>(c), 1); - EXPECT_EQ(paddle::framework::get<1>(c), 3); - EXPECT_EQ(paddle::framework::get<2>(c), 12); - - // generate from an index - auto size = paddle::framework::make_dim(4, 5, 2); - c = paddle::framework::Dim<3>(14, size); - EXPECT_EQ(paddle::framework::get<0>(c), 2); - EXPECT_EQ(paddle::framework::get<1>(c), 3); - EXPECT_EQ(paddle::framework::get<2>(c), 0); - c = paddle::framework::Dim<3>(25, size); - EXPECT_EQ(paddle::framework::get<0>(c), 1); - EXPECT_EQ(paddle::framework::get<1>(c), 1); - EXPECT_EQ(paddle::framework::get<2>(c), 1); + // construct a Dim on the CPU + auto a = paddle::framework::make_dim(3, 4); + EXPECT_EQ(paddle::framework::get<0>(a), 3); + EXPECT_EQ(paddle::framework::get<1>(a), 4); + + // construct a Dim on the GPU + thrust::device_vector<paddle::framework::Dim<2>> t(2); + test<<<1, 1>>>(thrust::raw_pointer_cast(t.data())); + a = t[0]; + EXPECT_EQ(paddle::framework::get<0>(a), 5); + EXPECT_EQ(paddle::framework::get<1>(a), 6); + + // linearization + auto b = paddle::framework::make_dim(7, 8); + EXPECT_EQ(paddle::framework::linearize(a, b), 83); + + // product + EXPECT_EQ(paddle::framework::product(a), 30); + + // mutate a Dim + paddle::framework::get<1>(b) = 10; + EXPECT_EQ(paddle::framework::get<0>(b), 7); + EXPECT_EQ(paddle::framework::get<1>(b), 10); + + // dynamic access + paddle::framework::get(b, 0) = 8; + b[1] = 11; + EXPECT_EQ(paddle::framework::get<0>(b), 8); + EXPECT_EQ(paddle::framework::get<1>(b), 11); + EXPECT_EQ(paddle::framework::get(b, 0), 8); + EXPECT_EQ(b[1], 11); + + // dynamic access on GPU + thrust::device_vector<int> r(1); + dyn_idx_gpu<<<1, 1>>>(thrust::raw_pointer_cast(r.data())); + int res = r[0]; + EXPECT_EQ(res, 6); + + // ex_prefix_mul + paddle::framework::Dim<3> c = + paddle::framework::ex_prefix_mul(paddle::framework::Dim<3>(3, 4, 5)); + EXPECT_EQ(paddle::framework::get<0>(c), 1); + EXPECT_EQ(paddle::framework::get<1>(c), 3); + EXPECT_EQ(paddle::framework::get<2>(c), 12); + + // generate from an index + auto size = paddle::framework::make_dim(4, 5, 2); + c = paddle::framework::Dim<3>(14, size); + EXPECT_EQ(paddle::framework::get<0>(c), 2); + EXPECT_EQ(paddle::framework::get<1>(c), 3); + EXPECT_EQ(paddle::framework::get<2>(c), 0); + c = paddle::framework::Dim<3>(25, size); + EXPECT_EQ(paddle::framework::get<0>(c), 1); + EXPECT_EQ(paddle::framework::get<1>(c), 1); + EXPECT_EQ(paddle::framework::get<2>(c), 1); } TEST(Dim, Bool) { - auto a = paddle::framework::make_dim(3, 4); - auto b = paddle::framework::make_dim(5, 6); - auto c = paddle::framework::make_dim(3, 4); - - // in_bounds check - EXPECT_TRUE(paddle::framework::contained(a, b)); - EXPECT_FALSE(paddle::framework::contained(b, a)); - - // comparison - EXPECT_TRUE(a == a); - EXPECT_FALSE(a == b); - EXPECT_TRUE(a == c); + auto a = paddle::framework::make_dim(3, 4); + auto b = paddle::framework::make_dim(5, 6); + auto c = paddle::framework::make_dim(3, 4); + + // in_bounds check + EXPECT_TRUE(paddle::framework::contained(a, b)); + EXPECT_FALSE(paddle::framework::contained(b, a)); + + // comparison + EXPECT_TRUE(a == a); + EXPECT_FALSE(a == b); + EXPECT_TRUE(a == c); } TEST(Dim, Print) { - { - std::stringstream ss; - auto a = paddle::framework::make_dim(2, 3); - ss << a; - EXPECT_EQ(ss.str(), "2, 3"); - } - { - std::stringstream ss; - ss << paddle::framework::make_dim(8); - EXPECT_EQ(ss.str(), "8"); - } + { + std::stringstream ss; + auto a = paddle::framework::make_dim(2, 3); + ss << a; + EXPECT_EQ(ss.str(), "2, 3"); + } + { + std::stringstream ss; + ss << paddle::framework::make_dim(8); + EXPECT_EQ(ss.str(), "8"); + } } diff --git a/paddle/framework/enforce.cc b/paddle/framework/enforce.cc new file mode 100644 index 0000000000000000000000000000000000000000..644930ff989bb8935f37642c117084f580379bd7 --- /dev/null +++ b/paddle/framework/enforce.cc @@ -0,0 +1,15 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/framework/enforce.h" diff --git a/paddle/framework/enforce.h b/paddle/framework/enforce.h index 56cb7f95647e81efef58b156002d0d378ee22820..ffce8148e9516a5720757c87685ff6bd2937977c 100644 --- a/paddle/framework/enforce.h +++ b/paddle/framework/enforce.h @@ -10,6 +10,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #pragma once +#include <glog/logging.h> #include <paddle/string/printf.h> #include <exception> #include <sstream> @@ -58,12 +59,17 @@ class EnforceNotMet : public std::exception { /** * @brief Enforce a condition, otherwise throw an EnforceNotMet */ +#ifdef NDEBUG #define PADDLE_ENFORCE(condition, ...) \ do { \ if (UNLIKELY(!(condition))) { \ PADDLE_THROW(__VA_ARGS__); \ } \ } while (0) +#else +#define PADDLE_ENFORCE(condition, ...) \ + CHECK(condition) << ::paddle::string::Sprintf(__VA_ARGS__); +#endif } // namespace framework } // namespace paddle diff --git a/paddle/framework/net.cc b/paddle/framework/net.cc index a0e8788846d795429ba35715e60d4e3421e2f5ff..7311cda9a9ad282b21711d8eb0b9ba1cf9542296 100644 --- a/paddle/framework/net.cc +++ b/paddle/framework/net.cc @@ -19,18 +19,41 @@ namespace paddle { namespace framework { -PlainNet::PlainNet(const NetDesc& def) {} - -void PlainNet::InferShape(const ScopePtr& scope) const { +void PlainNet::CompleteAddOp() { + std::unordered_set<std::string> input_set; + std::unordered_set<std::string> output_set; + std::unordered_set<std::string> temp_output; for (auto& op : ops_) { - op.InferShape(); + for (auto& ipt : op->inputs_) { + if (!Contains(output_set, ipt)) { // Not other op's output + input_set.insert(ipt); + } else { + temp_output.insert(ipt); + } + } + + for (auto& opt : op->outputs_) { + output_set.insert(opt); + } } -} - -void PlainNet::Run(const ScopePtr& scope, const DeviceContext& ctx) const { - for (auto& op : ops_) { - op.Run(ctx); + inputs_.reserve(input_set.size()); + std::copy(input_set.begin(), input_set.end(), std::back_inserter(inputs_)); + + outputs_.reserve(output_set.size()); + std::vector<int> tmp_index; + tmp_index.reserve(temp_output.size()); + int idx = 0; + for (auto& opt : output_set) { + if (Contains(temp_output, opt)) { + tmp_index.push_back(idx); + } + outputs_.push_back(opt); + ++idx; } + + attrs_["temporary_index"] = tmp_index; + add_op_done_ = true; } + } // namespace framework } // namespace paddle diff --git a/paddle/framework/net.h b/paddle/framework/net.h index 0481d8f47ccbc171c0b752d48493498371ed8d4d..19a1620e29b86fbccfc112a5f85a1784a197dd0b 100644 --- a/paddle/framework/net.h +++ b/paddle/framework/net.h @@ -1,99 +1,51 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #pragma once +#include <paddle/framework/op_desc.pb.h> +#include <paddle/framework/operator.h> #include "paddle/framework/net_proto.pb.h" #include "paddle/framework/op_proto.pb.h" +#include "paddle/framework/op_registry.h" #include "paddle/framework/scope.h" #include "paddle/platform/device_context.h" namespace paddle { namespace framework { -using namespace paddle::platform; - -// operator's index stored in a network. -typedef int OpIndex; -/** - * NOTE following codes are some definitions of unimplemented concepts. - * We write some basic implementation to make Net compilable. These APIs will - * keep updating if the concepts related are implemented. - */ - -struct OpDesc; -struct OpAttrs {}; - -class Operator { - public: - Operator(const OpDesc &def) {} - void InferShape() const {} - void Run(const DeviceContext &ctx) const {} -}; - /** - * @brief Network that manage the operators it has. + * @brief Network is also a type of Operator + * + * It will manage the operators it has. * - * Network is the container and controller of a set of operators, user can build - * a real network from a NetDesc which is a protobuf message and use - * Network.Run() * to run all the operators in the network. + * Network is the container and controller of a set of operators. * A network object knows all Operators belonging to this network. Variables, * which are inputs and outputs of these operators, are created and managed by a * hierarchy of Scope objects. * - * This is the base class of network, all the networks should implement the apis + * This is the base class of network, all the networks should implement the APIs * it defines. */ -class Net { +class Net : public OperatorBase { public: - /** - * @brief Infer shapes of all inputs and outputs of operators. - */ - virtual void InferShape(const ScopePtr &scope) const = 0; - /** - * @brief Run the network. - * - * Run all the operators and return success(true) or not, with all the - * variables are located in `scope`. `context` describes the detail execution - * environment for ops. `begin` and `end` specify the scope of `ops_` to run, - * If no positive indexes are provided, all operators in `ops_` will run. - */ - virtual void Run(const ScopePtr &scope, const DeviceContext &ctx) const = 0; - - /** - * @brief Add an Operator according to `def`. - */ - virtual OpIndex AddOp(const OpProto &def) = 0; - - /** - * @brief Add optimizer operators acctording to `attrs`. - */ - virtual void AddOptimizerOps(const OpAttrs &attrs) = 0; - - /** - * @brief Add backward operators. - */ - virtual void AddBackwardOps() = 0; - - /** - * @brief Create a network. - */ - static std::unique_ptr<Net> Create(const NetDesc &def = NetDesc()); - - virtual ~Net() {} + virtual void AddOp(const OperatorPtr& op) = 0; + virtual void CompleteAddOp() = 0; }; +using NetPtr = std::shared_ptr<Net>; + /** * @brief a basic implementation of Net. * @@ -103,18 +55,14 @@ class Net { class PlainNet : public Net { public: /** - * @brief Initialize a PlainNet. - * - * Initialize from a network describe by `def`. NetDesc is the definition of - * a network. - */ - PlainNet(const NetDesc &def); - - /** - * Infer all the operators' input and output varialbes' shapes, will be called + * Infer all the operators' input and output variables' shapes, will be called * before every mini-batch */ - virtual void InferShape(const ScopePtr &scope) const override; + void InferShape(const ScopePtr& scope) const override { + for (auto& op : ops_) { + op->InferShape(scope); + } + } /** * @brief Run the network. @@ -123,49 +71,32 @@ class PlainNet : public Net { * scope will be used instead. If no OpContext is provicded, default context * will be used. */ - virtual void Run(const ScopePtr &scope, - const DeviceContext &ctx) const override; + void Run(const ScopePtr& scope, + const platform::DeviceContext& dev_ctx) const override { + for (auto& op : ops_) { + op->Run(scope, dev_ctx); + } + } /** - * @brief Add an operator to this network. + * @brief Add an operator by ptr */ - virtual OpIndex AddOp(const OpProto &def) override; + void AddOp(const OperatorPtr& op) override { + PADDLE_ENFORCE(!add_op_done_, "Cannot AddOp when this network is sealed"); + ops_.push_back(op); + } - /** - * @brief Add all optimizer operators related into the network. - */ - virtual void AddOptimizerOps(const OpAttrs &attrs) override; + void CompleteAddOp() override; - /** - * @brief Add all backward operators related into the network. - */ - virtual void AddBackwardOps() override; - - virtual ~PlainNet() override {} - - protected: - /** - * @brief Build the network. - * - * Create operators accordding to `def`, will be called by the constructor. - */ - void BuildNet(const NetDesc &def); - - /** - * @brief Add an operator into this network. - * - * Add a operator which is identified as `type` and has attributes described - * in `attrs`, the `inputs` are the keys of readonly input variables, - * `outputs` are keys of mutable output variables. An `OpIndex` will be - * returned to indicate the offset of the new operator in `ops_`. - */ - OpIndex AddOp(const std::string &type, const std::vector<std::string> &inputs, - const std::vector<std::string> &outputs, - const OpAttrs &attrs = OpAttrs()); + std::vector<OperatorPtr> ops_; private: - // the operators owned by `Network`. - std::vector<Operator> ops_; + bool add_op_done_{false}; + + template <typename T, typename KeyType> + static bool Contains(T container, KeyType key) { + return container.find(key) != container.end(); + } }; } // namespace framework diff --git a/paddle/framework/net_op_test.cc b/paddle/framework/net_op_test.cc new file mode 100644 index 0000000000000000000000000000000000000000..f5e1c22400a73c3aa09839ef9654f87def99bc77 --- /dev/null +++ b/paddle/framework/net_op_test.cc @@ -0,0 +1,67 @@ +#include <gtest/gtest.h> +#include <paddle/framework/net.h> +#include <paddle/framework/op_registry.h> +#include <paddle/framework/operator.h> + +namespace pd = paddle::framework; + +static int infer_shape_cnt = 0; +static int run_cnt = 0; + +class TestOp : public pd::OperatorBase { + public: + void InferShape(const paddle::framework::ScopePtr& scope) const override { + ++infer_shape_cnt; + } + void Run(const paddle::framework::ScopePtr& scope, + const paddle::platform::DeviceContext& dev_ctx) const override { + ++run_cnt; + } +}; + +template <typename T> +void AssertSameVectorWithoutOrder(const std::vector<T>& expected, + const std::vector<T>& actual) { + ASSERT_EQ(expected.size(), actual.size()); + std::unordered_set<T> expected_set; + for (auto& tmp : expected) { + expected_set.insert(tmp); + } + for (auto& act : actual) { + ASSERT_NE(expected_set.end(), expected_set.find(act)); + } +} + +TEST(OpKernel, all) { + auto net = std::make_shared<paddle::framework::PlainNet>(); + ASSERT_NE(net, nullptr); + + auto op1 = std::make_shared<TestOp>(); + op1->inputs_ = {"x", "w1", "b1"}; + op1->outputs_ = {"y"}; + net->AddOp(op1); + + auto op2 = std::make_shared<TestOp>(); + op2->inputs_ = {"y", "w2", "b2"}; + op2->outputs_ = {"z"}; + net->AddOp(op2); + + net->CompleteAddOp(); + AssertSameVectorWithoutOrder({"x", "w1", "b1", "w2", "b2"}, net->inputs_); + AssertSameVectorWithoutOrder({"y", "z"}, net->outputs_); + auto tmp_idx_iter = net->attrs_.find("temporary_index"); + ASSERT_NE(net->attrs_.end(), tmp_idx_iter); + auto& tmp_idx = boost::get<std::vector<int>>(tmp_idx_iter->second); + ASSERT_EQ(1UL, tmp_idx.size()); + ASSERT_EQ("y", net->outputs_[tmp_idx[0]]); + + auto scope = std::make_shared<pd::Scope>(); + paddle::platform::CPUDeviceContext dev_ctx; + + net->InferShape(scope); + net->Run(scope, dev_ctx); + ASSERT_EQ(2, infer_shape_cnt); + ASSERT_EQ(2, run_cnt); + + ASSERT_THROW(net->AddOp(op2), paddle::framework::EnforceNotMet); +} diff --git a/paddle/framework/op_registry.h b/paddle/framework/op_registry.h index 6be6ae15c24e34386c61f19026bdad07b558adf7..7aa59f0b630d5a99fa15c00c9e32a22dd59b9a70 100644 --- a/paddle/framework/op_registry.h +++ b/paddle/framework/op_registry.h @@ -1,6 +1,7 @@ #pragma once #include <algorithm> +#include <atomic> #include <type_traits> #include <unordered_map> #include <unordered_set> @@ -61,7 +62,14 @@ class OpProtoAndCheckerMaker { OpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker) : proto_(proto), op_checker_(op_checker) {} - ~OpProtoAndCheckerMaker() { CheckNoDuplicatedAttrs(); } + ~OpProtoAndCheckerMaker() { + PADDLE_ENFORCE(validated_, "should call Validate after build"); + } + + void Validate() { + validated_ = true; + CheckNoDuplicatedInOutAttrs(); + } protected: void AddInput(const std::string& name, const std::string& comment, @@ -163,19 +171,26 @@ Add a mark to which output is temporary is helpful for future optimization. } } - void CheckNoDuplicatedAttrs() { + void CheckNoDuplicatedInOutAttrs() { std::unordered_set<std::string> names; - size_t cnt = 0; + auto checker = [&](const std::string& name) { + PADDLE_ENFORCE(!names.count(name), "[%s] is duplicated", name); + names.insert(name); + }; for (auto& attr : proto_->attrs()) { - names.insert(attr.name()); - ++cnt; + checker(attr.name()); + } + for (auto& input : proto_->inputs()) { + checker(input.name()); + } + for (auto& output : proto_->outputs()) { + checker(output.name()); } - PADDLE_ENFORCE(names.size() == cnt, - "Cannot register two attribute in same name!"); } OpProto* proto_; OpAttrChecker* op_checker_; + bool validated_{false}; bool has_multiple_input_{false}; bool has_multiple_output_{false}; bool has_temporary_output_{false}; @@ -190,7 +205,8 @@ class OpRegistry { creators()[op_type] = [] { return new OpType; }; OpProto& op_proto = protos()[op_type]; OpAttrChecker& op_checker = op_checkers()[op_type]; - ProtoMakerType(&op_proto, &op_checker); + auto maker = ProtoMakerType(&op_proto, &op_checker); + maker.Validate(); *op_proto.mutable_type() = op_type; PADDLE_ENFORCE( op_proto.IsInitialized(), @@ -199,27 +215,42 @@ class OpRegistry { } static OperatorPtr CreateOp(const OpDesc& op_desc) { + //! Create a OpPtr by type. std::string op_type = op_desc.type(); OperatorPtr op(creators().at(op_type)()); - op->desc_ = op_desc; + //! Fill op's data member. Not use constructor because it will be noising + //! for Op developer. + const OpProto& op_proto = protos().at(op_type); + op->type_ = op_desc.type(); + // set op's inputs_ from desc. op->inputs_.reserve((size_t)op_desc.inputs_size()); std::copy(op_desc.inputs().begin(), op_desc.inputs().end(), std::back_inserter(op->inputs_)); + // set op's outputs_ from desc. op->outputs_.reserve((size_t)op_desc.outputs_size()); std::copy(op_desc.outputs().begin(), op_desc.outputs().end(), std::back_inserter(op->outputs_)); + + //! Fill attrs, and validate attrs. for (auto& attr : op_desc.attrs()) { op->attrs_[attr.name()] = AttrTypeHelper::GetAttrValue(attr); } op_checkers().at(op_type).Check(op->attrs_); + + //! Convert Temporary variable name to an unique variable name. + GenerateTempVariableName(op.get()); + + // set argument offsets stored in op. + CreateInOutOffsetMap(op, op_proto); + //! Other op's custom Init for a complex Op. For simple Op, the Init + //! method do nothing. op->Init(); return op; } - private: - static std::unordered_map<std::string, OpCreator>& creators() { - static std::unordered_map<std::string, OpCreator> creators_; - return creators_; + // init op.in_out_idxs_ to accelerate argument's offset lookup. + static void CreateInOutOffsetMap(OperatorPtr op, const OpProto& proto) { + op->CreateInOutOffsetMap(proto); } static std::unordered_map<std::string, OpProto>& protos() { @@ -227,6 +258,23 @@ class OpRegistry { return protos_; }; + private: + static void GenerateTempVariableName(OperatorBase* op) { + static std::atomic<size_t> gUniqId(0UL); + for (auto& outname : op->outputs_) { + if (outname == OperatorBase::TMP_VAR_NAME()) { + outname += op->type_; + outname += "@"; + outname += std::to_string(gUniqId.fetch_add(1)); + } + } + } + + static std::unordered_map<std::string, OpCreator>& creators() { + static std::unordered_map<std::string, OpCreator> creators_; + return creators_; + } + static std::unordered_map<std::string, OpAttrChecker>& op_checkers() { static std::unordered_map<std::string, OpAttrChecker> op_checkers_; return op_checkers_; @@ -241,12 +289,18 @@ class OpRegisterHelper { } }; +/** + * check if MACRO is used in GLOBAL NAMESPACE. + */ #define STATIC_ASSERT_GLOBAL_NAMESPACE(uniq_name, msg) \ struct __test_global_namespace_##uniq_name##__ {}; \ static_assert(std::is_same<::__test_global_namespace_##uniq_name##__, \ __test_global_namespace_##uniq_name##__>::value, \ msg) +/** + * Macro to Register Operator. + */ #define REGISTER_OP(__op_type, __op_class, __op_maker_class) \ STATIC_ASSERT_GLOBAL_NAMESPACE(__reg_op__##__op_type, \ "REGISTER_OP must be in global namespace"); \ @@ -254,9 +308,12 @@ class OpRegisterHelper { __op_register_##__op_type##__(#__op_type); \ int __op_register_##__op_type##_handle__() { return 0; } -#define REGISTER_OP_KERNEL(type, GPU_OR_CPU, PlaceType, KernelType) \ +/** + * Macro to Register OperatorKernel. + */ +#define REGISTER_OP_KERNEL(type, DEVICE_TYPE, PlaceType, KernelType) \ STATIC_ASSERT_GLOBAL_NAMESPACE( \ - __reg_op_kernel_##type##_##GPU_OR_CPU##__, \ + __reg_op_kernel_##type##_##DEVICE_TYPE##__, \ "REGISTER_OP_KERNEL must be in global namespace"); \ struct __op_kernel_register__##type##__ { \ __op_kernel_register__##type##__() { \ @@ -267,7 +324,7 @@ class OpRegisterHelper { } \ }; \ static __op_kernel_register__##type##__ __reg_kernel_##type##__; \ - int __op_kernel_register_##type##_handle_##GPU_OR_CPU##__() { return 0; } + int __op_kernel_register_##type##_handle_##DEVICE_TYPE##__() { return 0; } #define REGISTER_OP_GPU_KERNEL(type, KernelType) \ REGISTER_OP_KERNEL(type, GPU, ::paddle::platform::GPUPlace, KernelType) @@ -275,6 +332,10 @@ class OpRegisterHelper { #define REGISTER_OP_CPU_KERNEL(type, KernelType) \ REGISTER_OP_KERNEL(type, CPU, ::paddle::platform::CPUPlace, KernelType) +/** + * Macro to mark what Operator and Kernel we will use and tell the compiler to + * link them into target. + */ #define USE_OP_WITHOUT_KERNEL(op_type) \ STATIC_ASSERT_GLOBAL_NAMESPACE( \ __use_op_without_kernel_##op_type, \ @@ -292,15 +353,16 @@ class OpRegisterHelper { __attribute__((unused)) = \ __op_kernel_register_##op_type##_handle_##DEVICE_TYPE##__() -#ifdef PADDLE_ONLY_CPU -#define USE_OP(op_type) \ +// use Operator with only cpu kernel. +#define USE_OP_CPU(op_type) \ USE_OP_WITHOUT_KERNEL(op_type); \ - USE_OP_KERNEL(op_type, CPU); + USE_OP_KERNEL(op_type, CPU) +#ifdef PADDLE_ONLY_CPU +#define USE_OP(op_type) USE_OP_CPU(op_type) #else -#define USE_OP(op_type) \ - USE_OP_WITHOUT_KERNEL(op_type); \ - USE_OP_KERNEL(op_type, CPU); \ +#define USE_OP(op_type) \ + USE_OP_CPU(op_type); \ USE_OP_KERNEL(op_type, GPU) #endif diff --git a/paddle/framework/op_registry_test.cc b/paddle/framework/op_registry_test.cc index 4791d4aaab4cfe19d1cca7741ce259f8f7aeb18a..d3a51a361aa56b26b87d79057f6700bd87264ca4 100644 --- a/paddle/framework/op_registry_test.cc +++ b/paddle/framework/op_registry_test.cc @@ -1,6 +1,8 @@ #include "paddle/framework/op_registry.h" #include <gtest/gtest.h> +namespace pd = paddle::framework; + namespace paddle { namespace framework { class CosineOp : public OperatorBase { @@ -28,8 +30,6 @@ class MyTestOp : public OperatorBase { void InferShape(const ScopePtr& scope) const override {} void Run(const ScopePtr& scope, const platform::DeviceContext& dev_ctx) const override {} - - public: }; class MyTestOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker { @@ -182,3 +182,35 @@ TEST(OpRegistry, CustomChecker) { int test_attr = op->GetAttr<int>("test_attr"); ASSERT_EQ(test_attr, 4); } + +class TestAttrProtoMaker : public pd::OpProtoAndCheckerMaker { + public: + TestAttrProtoMaker(pd::OpProto* proto, pd::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddAttr<float>("scale", "scale of test op"); + AddAttr<float>("scale", "scale of test op"); + } +}; + +TEST(ProtoMaker, DuplicatedAttr) { + pd::OpProto op_proto; + pd::OpAttrChecker op_checker; + auto proto_maker = TestAttrProtoMaker(&op_proto, &op_checker); + ASSERT_THROW(proto_maker.Validate(), paddle::framework::EnforceNotMet); +} + +class TestInOutProtoMaker : public pd::OpProtoAndCheckerMaker { + public: + TestInOutProtoMaker(pd::OpProto* proto, pd::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("input", "input of test op"); + AddInput("input", "input of test op"); + } +}; + +TEST(ProtoMaker, DuplicatedInOut) { + pd::OpProto op_proto; + pd::OpAttrChecker op_checker; + auto proto_maker = TestInOutProtoMaker(&op_proto, &op_checker); + ASSERT_THROW(proto_maker.Validate(), paddle::framework::EnforceNotMet); +} diff --git a/paddle/framework/operator.cc b/paddle/framework/operator.cc index d065670829ccbbc209181ee87e9f1301aa648b3f..50cb2d936274dcc046d5641ff276aae77358d1bf 100644 --- a/paddle/framework/operator.cc +++ b/paddle/framework/operator.cc @@ -12,30 +12,86 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ +#include <algorithm> + #include "paddle/framework/operator.h" namespace paddle { namespace framework { +void OperatorBase::CreateInOutOffsetMap(const OpProto& proto) { + PADDLE_ENFORCE(in_out_idxs_.empty(), "duplicate call CreateInOutOffsetMap"); + for (int i = 0; i < proto.inputs_size(); i++) { + const auto& name = proto.inputs()[i].name(); + in_out_idxs_[name] = i; + } + for (int i = 0; i < proto.outputs_size(); i++) { + const auto& name = proto.outputs()[i].name(); + in_out_idxs_[name] = i; + } +} + +const std::string& OperatorBase::Input(const std::string& name) const { + auto it = in_out_idxs_.find(name); + PADDLE_ENFORCE(it != in_out_idxs_.end(), "no key [%s] in in_out_idxs_", name); + + if (attrs_.count("input_format") == 0) { + return inputs_[it->second]; + } else { + const auto& input_format = GetAttr<std::vector<int>>("input_format"); + int idx = input_format[it->second]; + return inputs_.at(idx); + } +} + +std::vector<std::string> OperatorBase::Inputs(const std::string& name) const { + auto input_format = GetAttr<std::vector<int>>("input_format"); + auto offset = in_out_idxs_.at(name); + + return std::vector<std::string>{ + inputs_.begin() + input_format.at(offset), + inputs_.begin() + input_format.at(offset + 1)}; +} + +const std::string& OperatorBase::Output(const std::string& name) const { + auto it = in_out_idxs_.find(name); + PADDLE_ENFORCE(it != in_out_idxs_.end(), "no key [%s] in in_out_idxs_", name); + + if (attrs_.count("output_format") == 0) { + return outputs_[it->second]; + } else { + const auto& output_format = GetAttr<std::vector<int>>("output_format"); + int idx = output_format[it->second]; + return outputs_.at(idx); + } +} + +std::vector<std::string> OperatorBase::Outputs(const std::string& name) const { + auto output_format = GetAttr<std::vector<int>>("output_format"); + auto offset = in_out_idxs_.at(name); + + return std::vector<std::string>{ + outputs_.begin() + output_format.at(offset), + outputs_.begin() + output_format.at(offset + 1)}; +} + std::string OperatorBase::DebugString() const { std::stringstream ss; - ss << "=================\n"; - ss << "type = " << desc_.type() << "\n"; - ss << "inputs = ["; - for (auto& ipt : inputs_) { - ss << ipt << ", "; - } - ss << "]\n"; - ss << "outputs = ["; - for (auto& opt : outputs_) { - ss << opt << ", "; + ss << "Op(" << type_ << "), inputs:("; + for (size_t i = 0; i < inputs_.size(); ++i) { + ss << inputs_[i]; + if (i != inputs_.size() - 1) { + ss << ", "; + } } - ss << "]\n"; - ss << "attr_keys = ["; - for (auto& attr : attrs_) { - ss << attr.first << ", "; + ss << "), outputs:("; + for (size_t i = 0; i < outputs_.size(); ++i) { + ss << outputs_[i]; + if (i != outputs_.size() - 1) { + ss << ", "; + } } - ss << "]\n"; + ss << ")."; return ss.str(); } diff --git a/paddle/framework/operator.h b/paddle/framework/operator.h index cf79f379fae1e0d9bfa21cea4d22cf0264fcd9a6..2fe9670677c6041c0360d096b88e818676a8c929 100644 --- a/paddle/framework/operator.h +++ b/paddle/framework/operator.h @@ -14,18 +14,20 @@ limitations under the License. */ #pragma once -#include <paddle/framework/attr_checker.h> -#include <paddle/framework/op_desc.pb.h> -#include <paddle/framework/scope.h> -#include <paddle/framework/tensor.h> -#include <paddle/platform/device_context.h> -#include <paddle/platform/place.h> -#include <paddle/utils/Error.h> #include <boost/variant.hpp> #include <string> #include <unordered_map> #include <vector> +#include "paddle/framework/attr_checker.h" +#include "paddle/framework/op_desc.pb.h" +#include "paddle/framework/op_proto.pb.h" +#include "paddle/framework/scope.h" +#include "paddle/framework/tensor.h" +#include "paddle/platform/device_context.h" +#include "paddle/platform/place.h" +#include "paddle/utils/Error.h" + namespace paddle { namespace framework { @@ -39,6 +41,13 @@ using OperatorPtr = std::shared_ptr<OperatorBase>; */ class OperatorBase { public: + /// If a variable is a empty variable, that name will be used. + static std::string EMPTY_VAR_NAME() { return "@EMPTY@"; } + + /// If a variable is a temporary variable, that name will be set in Python, + /// but it will be convert to a unique name in scope after OpCreator. + static std::string TMP_VAR_NAME() { return "@TEMP@"; } + virtual ~OperatorBase() {} template <typename T> @@ -62,14 +71,72 @@ class OperatorBase { virtual void Run(const ScopePtr& scope, const platform::DeviceContext& dev_ctx) const = 0; - protected: - std::string Type() const { return desc_.type(); } + // Get a input with argument's name described in `op_proto` + const std::string& Input(const std::string& name) const; + // Get a input which has multiple variables. + // TODO add a vector_view to prevent memory copy. + std::vector<std::string> Inputs(const std::string& name) const; + // Get a output with argument's name described in `op_proto` + const std::string& Output(const std::string& name) const; + // Get an output which has multiple variables. + // TODO add a vector_view to prevent memory copy. + std::vector<std::string> Outputs(const std::string& name) const; + + // init in_out_idxs_ to accelerate argument's offset lookup. + void CreateInOutOffsetMap(const OpProto& proto); public: - OpDesc desc_; + std::string type_; std::vector<std::string> inputs_; std::vector<std::string> outputs_; AttributeMap attrs_; + // store the arguments' offset described in op_desc. + std::unordered_map<std::string, int> in_out_idxs_; +}; + +class KernelContext { + public: + KernelContext(const OperatorBase* op, const std::shared_ptr<Scope>& scope, + const platform::DeviceContext& device_context) + : op_(*op), scope_(scope), device_context_(device_context) {} + + const Variable* Input(int index) const { + return scope_->GetVariable(op_.inputs_[index]); + } + + Variable* Output(int index) const { + return scope_->GetVariable(op_.outputs_[index]); + } + + const Variable* Input(const std::string& name) const { + return scope_->GetVariable(op_.Input(name)); + } + + const Variable* Output(const std::string& name) const { + return scope_->GetVariable(op_.Output(name)); + } + + const std::vector<const Variable*> Inputs(const std::string& name) const { + auto names = op_.Inputs(name); + std::vector<const Variable*> res; + std::transform( + names.begin(), names.end(), res.begin(), + [this](const std::string& name) { return scope_->GetVariable(name); }); + return res; + } + + const std::vector<const Variable*> Outputs(const std::string& name) const { + auto names = op_.Outputs(name); + std::vector<const Variable*> res; + std::transform( + names.begin(), names.end(), res.begin(), + [this](const std::string& name) { return scope_->GetVariable(name); }); + return res; + } + + const OperatorBase& op_; + const std::shared_ptr<Scope>& scope_; + const platform::DeviceContext& device_context_; }; class OpKernel { @@ -80,25 +147,6 @@ class OpKernel { * device resource such as CUDA stream, cublas handle, etc. from * KernelContext. User should construct it before run the Operator. */ - class KernelContext { - public: - KernelContext(const OperatorBase* op, const ScopePtr& scope, - const platform::DeviceContext& device_context) - : op_(*op), scope_(scope), device_context_(device_context) {} - - const Variable* Input(int index) const { - return scope_->GetVariable(op_.inputs_[index]); - } - - Variable* Output(int index) const { - return scope_->GetVariable(op_.outputs_[index]); - } - - const OperatorBase& op_; - const ScopePtr& scope_; - const platform::DeviceContext& device_context_; - }; - virtual void Compute(const KernelContext& context) const = 0; virtual ~OpKernel() {} @@ -142,8 +190,8 @@ class OperatorWithKernel : public OperatorBase { void Run(const ScopePtr& scope, const platform::DeviceContext& dev_ctx) const final { - auto& opKernel = AllOpKernels().at(Type()).at(OpKernelKey(dev_ctx)); - opKernel->Compute(OpKernel::KernelContext(this, scope, dev_ctx)); + auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx)); + opKernel->Compute(KernelContext(this, scope, dev_ctx)); } static std::unordered_map<std::string /* op_type */, OpKernelMap>& @@ -151,6 +199,7 @@ class OperatorWithKernel : public OperatorBase { static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels; return g_all_op_kernels; } + void InferShape(const std::shared_ptr<Scope>& scope) const final { std::vector<const Tensor*> ins; VarNamesToTensors(scope, inputs_, &ins); diff --git a/paddle/framework/operator_test.cc b/paddle/framework/operator_test.cc index d0c3153faef6537cb4260c9d7fe093acb8f839f0..6fa110f94ccc0c0a2f2e61316aa5dc271631a11c 100644 --- a/paddle/framework/operator_test.cc +++ b/paddle/framework/operator_test.cc @@ -19,14 +19,17 @@ limitations under the License. */ namespace paddle { namespace framework { -class OperatorTest : public OperatorBase { +static int op_run_num = 0; + +class OpWithoutKernelTest : public OperatorBase { public: void Init() override { x = 1; } void InferShape(const ScopePtr& scope) const override {} void Run(const ScopePtr& scope, const platform::DeviceContext& dev_ctx) const override { - float scale = GetAttr<float>("scale"); - ASSERT_NEAR(scale, 3.14, 1e-5); + op_run_num++; + ASSERT_EQ((int)inputs_.size(), 1); + ASSERT_EQ((int)outputs_.size(), 1); ASSERT_EQ(scope->GetVariable(inputs_[0]), nullptr); ASSERT_EQ(x, 1); ASSERT_NE(scope->GetVariable(outputs_[0]), nullptr); @@ -36,15 +39,14 @@ class OperatorTest : public OperatorBase { float x = 0; }; -class OperatorTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker { +class OpeWithoutKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker { public: - OperatorTestProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker) + OpeWithoutKernelTestProtoAndCheckerMaker(OpProto* proto, + OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("input", "input of test op"); AddOutput("output", "output of test op"); - AddAttr<float>("scale", "scale of cosine op") - .SetDefault(1.0) - .LargerThan(0.0); + AddAttr<float>("scale", "scale of cosine op"); AddComment("This is test op"); } }; @@ -52,8 +54,8 @@ class OperatorTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker { } // namespace framework } // namespace paddle -REGISTER_OP(test_operator, paddle::framework::OperatorTest, - paddle::framework::OperatorTestProtoAndCheckerMaker); +REGISTER_OP(test_operator, paddle::framework::OpWithoutKernelTest, + paddle::framework::OpeWithoutKernelTestProtoAndCheckerMaker); TEST(OperatorBase, all) { paddle::framework::OpDesc op_desc; @@ -63,18 +65,17 @@ TEST(OperatorBase, all) { auto attr = op_desc.mutable_attrs()->Add(); attr->set_name("scale"); attr->set_type(paddle::framework::AttrType::FLOAT); - float scale = 3.14; - attr->set_f(scale); + attr->set_f(3.14); paddle::platform::CPUDeviceContext device_context; auto scope = std::make_shared<paddle::framework::Scope>(); paddle::framework::OperatorPtr op = paddle::framework::OpRegistry::CreateOp(op_desc); - ASSERT_EQ(op->GetAttr<float>("scale"), scale); scope->CreateVariable("OUT1"); + ASSERT_EQ(paddle::framework::op_run_num, 0); op->Run(scope, device_context); - std::cout << op->DebugString() << std::endl; + ASSERT_EQ(paddle::framework::op_run_num, 1); } namespace paddle { @@ -84,8 +85,8 @@ class OpKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker { public: OpKernelTestProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("input", "input of test op"); - AddOutput("output", "output of test op"); + AddInput("x", "input of test op"); + AddOutput("y", "output of test op"); AddAttr<float>("scale", "scale of cosine op") .SetDefault(1.0) .LargerThan(0.0); @@ -93,6 +94,8 @@ class OpKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker { } }; +static int cpu_kernel_run_num = 0; + class OpWithKernelTest : public OperatorWithKernel { protected: void InferShape(const std::vector<const Tensor*>& inputs, @@ -101,11 +104,65 @@ class OpWithKernelTest : public OperatorWithKernel { class CPUKernelTest : public OpKernel { public: - void Compute(const KernelContext& context) const { - float scale = context.op_.GetAttr<float>("scale"); - ASSERT_NEAR(scale, 3.14, 1e-5); + void Compute(const KernelContext& ctx) const { std::cout << "this is cpu kernel" << std::endl; - std::cout << context.op_.DebugString() << std::endl; + std::cout << ctx.op_.DebugString() << std::endl; + cpu_kernel_run_num++; + ASSERT_EQ(ctx.op_.Input("x"), "IN1"); + ASSERT_EQ(ctx.op_.Output("y"), "OUT1"); + } +}; + +// multiple inputs test +class OperatorMultiInputsTest : public OperatorBase { + public: + void Init() override { x = 1; } + void InferShape(const std::shared_ptr<Scope>& scope) const override {} + void Run(const std::shared_ptr<Scope>& scope, + const platform::DeviceContext& dev_ctx) const override { + ASSERT_EQ(scope->GetVariable(inputs_[0]), nullptr); + ASSERT_EQ(x, 1); + ASSERT_NE(scope->GetVariable(outputs_[0]), nullptr); + ASSERT_EQ(Input("x"), "IN1"); + ASSERT_EQ(Input("y"), "OUT1"); + } + + public: + float x = 0; +}; + +class OpKernelTestMultiInputsProtoAndCheckerMaker + : public OpProtoAndCheckerMaker { + public: + OpKernelTestMultiInputsProtoAndCheckerMaker(OpProto* proto, + OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInputs("xs", "inputs of test op"); + AddInput("k", "input of test op"); + AddOutputs("ys", "outputs of test op"); + AddAttr<float>("scale", "scale of cosine op") + .SetDefault(1.0) + .LargerThan(0.0); + AddComment("This is test op"); + } +}; + +class CPUKernalMultiInputsTest : public OpKernel { + public: + void Compute(const KernelContext& ctx) const { + auto xs = ctx.op_.Inputs("xs"); + ASSERT_EQ(xs.size(), 3UL); + ASSERT_EQ(xs[0], "x0"); + ASSERT_EQ(xs[1], "x1"); + ASSERT_EQ(xs[2], "x2"); + + auto k = ctx.op_.Input("k"); + ASSERT_EQ(k, "k0"); + + auto ys = ctx.op_.Outputs("ys"); + ASSERT_EQ(ys.size(), 2UL); + ASSERT_EQ(ys[0], "y0"); + ASSERT_EQ(ys[1], "y1"); } }; @@ -116,6 +173,7 @@ REGISTER_OP(op_with_kernel, paddle::framework::OpWithKernelTest, paddle::framework::OpKernelTestProtoAndCheckerMaker); REGISTER_OP_CPU_KERNEL(op_with_kernel, paddle::framework::CPUKernelTest); +// test with single input TEST(OpKernel, all) { paddle::framework::OpDesc op_desc; op_desc.set_type("op_with_kernel"); @@ -131,5 +189,51 @@ TEST(OpKernel, all) { paddle::framework::OperatorPtr op = paddle::framework::OpRegistry::CreateOp(op_desc); + ASSERT_EQ(paddle::framework::cpu_kernel_run_num, 0); + op->Run(scope, cpu_device_context); + ASSERT_EQ(paddle::framework::cpu_kernel_run_num, 1); +} + +REGISTER_OP(op_multi_inputs_with_kernel, paddle::framework::OpWithKernelTest, + paddle::framework::OpKernelTestMultiInputsProtoAndCheckerMaker); +REGISTER_OP_CPU_KERNEL(op_multi_inputs_with_kernel, + paddle::framework::CPUKernalMultiInputsTest); + +// test with multi inputs +TEST(OpKernel, multi_inputs) { + using namespace paddle::framework; + + OpDesc op_desc; + op_desc.set_type("op_multi_inputs_with_kernel"); + *op_desc.mutable_inputs()->Add() = "x0"; + *op_desc.mutable_inputs()->Add() = "x1"; + *op_desc.mutable_inputs()->Add() = "x2"; + *op_desc.mutable_inputs()->Add() = "k0"; + *op_desc.mutable_outputs()->Add() = "y0"; + *op_desc.mutable_outputs()->Add() = "y1"; + auto attr = op_desc.mutable_attrs()->Add(); + attr->set_name("scale"); + attr->set_type(paddle::framework::AttrType::FLOAT); + attr->set_f(3.14); + + auto attr0 = op_desc.mutable_attrs()->Add(); + attr0->set_name("input_format"); + attr0->set_type(paddle::framework::AttrType::INTS); + auto input_format = attr0->mutable_ints(); + input_format->Add(0); // x0 + input_format->Add(3); // k + input_format->Add(4); // end + + auto attr1 = op_desc.mutable_attrs()->Add(); + attr1->set_name("output_format"); + attr1->set_type(paddle::framework::AttrType::INTS); + auto output_format = attr1->mutable_ints(); + output_format->Add(0); // y0 + output_format->Add(2); // y1 + + paddle::platform::CPUDeviceContext cpu_device_context; + auto scope = std::make_shared<Scope>(); + + OperatorPtr op(paddle::framework::OpRegistry::CreateOp(op_desc)); op->Run(scope, cpu_device_context); } diff --git a/paddle/framework/tensor.cc b/paddle/framework/tensor.cc new file mode 100644 index 0000000000000000000000000000000000000000..964f15ab66bca7da75824e192e61600c29e572c0 --- /dev/null +++ b/paddle/framework/tensor.cc @@ -0,0 +1,19 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include <paddle/framework/tensor.h> + +namespace paddle { +namespace framework {} +} // namespace paddle diff --git a/paddle/function/RowConvOpGpu.cu b/paddle/function/RowConvOpGpu.cu index c0b947e224313abaf4fadfb8293dc78ca085ff84..d9dcc7d59d1e3c222f5a7ce448daa8d7edb6c978 100644 --- a/paddle/function/RowConvOpGpu.cu +++ b/paddle/function/RowConvOpGpu.cu @@ -32,7 +32,7 @@ __global__ void KeRowConv(real* y, const real* x, const real* w, for (int i = tidy; i < context; i += blky) { sw[i][tidx] = gidx + tidx < width ? w[i*width + gidx + tidx] : 0.0; } - + __syncthreads(); for (int i = 0; i < numSeq; ++i) { @@ -144,12 +144,15 @@ __global__ void KeRowConvBwWeight(real* dw, const real* x, const real* dy, int yoff = start + j; // transpose - sh_x[tidx][tidy] = (xoff < width && yoff < end) ? x[yoff * width + xoff] : 0.0; - sh_dy[tidx][tidy + context - 1] = (xoff < width && yoff < end) ? dy[yoff * width + xoff] : 0.0; + sh_x[tidx][tidy] = (xoff < width && yoff < end) ? + x[yoff * width + xoff] : 0.0; + sh_dy[tidx][tidy + context - 1] = (xoff < width && yoff < end) ? + dy[yoff * width + xoff] : 0.0; __syncthreads(); if (tidy < (context - 1)) { yoff = yoff - context + 1; - sh_dy[tidx][tidy] = (xoff < width && yoff >= start) ? dy[yoff * width + xoff] : 0.0; + sh_dy[tidx][tidy] = (xoff < width && yoff >= start) ? + dy[yoff * width + xoff] : 0.0; } __syncthreads(); @@ -199,11 +202,13 @@ __global__ void KeRowConvBwWeight2(real* dw, const real* x, const real* dy, int yoff = start + j; // transpose - sh_x[tidx][tidy] = (xoff < width && yoff < end) ? x[yoff * width + xoff] : 0.0; + sh_x[tidx][tidy] = (xoff < width && yoff < end) ? + x[yoff * width + xoff] : 0.0; __syncthreads(); for (int t = 0; t < context; t++) { - sh_dy[tidx][tidy] = (xoff < width && (yoff - t) >= start && yoff - t < end) ? dy[(yoff - t) * width + xoff] : 0.0; + sh_dy[tidx][tidy] = (xoff < width && (yoff - t) >= start && + yoff - t < end) ? dy[(yoff - t) * width + xoff] : 0.0; __syncthreads(); real val = sh_x[tidy][tidx] * sh_dy[tidy][tidx]; @@ -239,7 +244,7 @@ __global__ void KeRowConvBwData(real* dx, const real* w, const real* dy, for (int i = tidy; i < context; i += blky) { sw[i][tidx] = gidx + tidx < width ? w[i*width + gidx + tidx] : 0.0; } - + __syncthreads(); for (int i = 0; i < numSeq; ++i) { @@ -312,7 +317,7 @@ void RowConvGrad<DEVICE_TYPE_GPU>(const GpuMatrix& outG, dim3 dimBlock(32, 32); dim3 dimGrid(DIVUP(width, dimBlock.x), 1); real* dw = filterG.getData(); - if (contextLength <= 32) { + if (contextLength <= 32) { KeRowConvBwWeight<32, 32, 32> <<<dimGrid, dimBlock, 0, STREAM_DEFAULT>>> (dw, x, dy, starts, height, width, numSeq, contextLength); diff --git a/paddle/operators/CMakeLists.txt b/paddle/operators/CMakeLists.txt index 40bb326512c118178184120d4bc26dc127689ff3..441b9e30c4268cce899ac873b2657c34603e0035 100644 --- a/paddle/operators/CMakeLists.txt +++ b/paddle/operators/CMakeLists.txt @@ -1,6 +1,44 @@ -if(WITH_GPU) - nv_library(add_op SRCS add_op.cc add_op.cu DEPS operator op_registry glog ddim) -else() - cc_library(add_op SRCS add_op.cc DEPS operator op_registry glog ddim) -endif() +function(op_library TARGET) + # op_library is a function to create op library. The interface is same as + # cc_library. But it handle split GPU/CPU code and link some common library + # for ops. + set(cc_srcs) + set(cu_srcs) + set(op_common_deps operator op_registry) + set(options "") + set(oneValueArgs "") + set(multiValueArgs SRCS DEPS) + cmake_parse_arguments(op_library "${options}" "${oneValueArgs}" + "${multiValueArgs}" ${ARGN}) + + foreach(src ${op_library_SRCS}) + if (${src} MATCHES ".*\\.cu$") + list(APPEND cu_srcs ${src}) + elseif(${src} MATCHES ".*\\.cc$") + list(APPEND cc_srcs ${src}) + else() + message(FATAL_ERROR "${TARGET} Source file ${src} should only be .cc or .cu") + endif() + endforeach() + + list(LENGTH cc_srcs cc_srcs_len) + if (${cc_srcs_len} EQUAL 0) + message(FATAL_ERROR "The op library ${TARGET} should contains at least one .cc file") + endif() + + list(LENGTH cu_srcs cu_srcs_len) + if (${cu_srcs_len} EQUAL 0) + message(WARNING "The op library ${TARGET} not support GPU!") + endif() + + if (WITH_GPU) + nv_library(${TARGET} SRCS ${cc_srcs} ${cu_srcs} DEPS ${op_library_DEPS} + ${op_common_deps}) + else() + cc_library(${TARGET} SRCS ${cc_srcs} DEPS ${op_library_DEPS} + ${op_common_deps}) + endif() +endfunction() + +op_library(add_op SRCS add_op.cc add_op.cu) cc_test(add_op_test SRCS add_op_test.cc DEPS add_op) diff --git a/paddle/operators/add_op.h b/paddle/operators/add_op.h index 17d459dbc86af73fa86934a5ccce9da509c59c6b..000564f66dff2b20d17cee10e44aaca114c2c908 100644 --- a/paddle/operators/add_op.h +++ b/paddle/operators/add_op.h @@ -8,10 +8,10 @@ namespace operators { template <typename Place> class AddKernel : public framework::OpKernel { public: - void Compute(const KernelContext &context) const override { + void Compute(const framework::KernelContext &context) const override { LOG(INFO) << "Add kernel in " << typeid(Place).name(); } }; -} // namespace op +} // namespace operators } // namespace paddle diff --git a/paddle/pybind/CMakeLists.txt b/paddle/pybind/CMakeLists.txt index af85fdeecb57729d7fb580ebd4c59c1afc61d61a..8564a5f5fe474dbd55ab3e413f9c2cf93f88e38e 100644 --- a/paddle/pybind/CMakeLists.txt +++ b/paddle/pybind/CMakeLists.txt @@ -1 +1 @@ -cc_library(paddle_pybind SHARED SRCS pybind.cc DEPS pybind python) +cc_library(paddle_pybind SHARED SRCS pybind.cc DEPS pybind python add_op) diff --git a/paddle/pybind/pybind.cc b/paddle/pybind/pybind.cc index f9f87acf15a6b62c343cc0e3db9ebc7e0aabb786..b5ead21fd0128f65f4adc662209af842a631fc41 100644 --- a/paddle/pybind/pybind.cc +++ b/paddle/pybind/pybind.cc @@ -13,12 +13,18 @@ See the License for the specific language governing permissions and limitations under the License. */ #include <Python.h> +#include <paddle/framework/op_registry.h> #include <paddle/framework/scope.h> #include <pybind11/pybind11.h> +#include <pybind11/stl.h> +#include <fstream> +#include <vector> namespace py = pybind11; namespace pd = paddle::framework; +USE_OP(add_two); + PYBIND11_PLUGIN(core) { py::module m("core", "C++ core of Paddle Paddle"); @@ -43,5 +49,37 @@ All parameter, weight, gradient are variables in Paddle. &pd::Scope::CreateVariable, py::return_value_policy::reference); + //! @note: Be careful! PyBind will return std::string as an unicode, not + //! Python str. If you want a str object, you should cast them in Python. + m.def("get_all_op_protos", []() -> std::vector<std::string> { + auto& protos = pd::OpRegistry::protos(); + std::vector<std::string> ret_values; + for (auto it = protos.begin(); it != protos.end(); ++it) { + PADDLE_ENFORCE(it->second.IsInitialized(), + "OpProto must all be initialized"); + ret_values.emplace_back(); + PADDLE_ENFORCE(it->second.SerializeToString(&ret_values.back()), + "Serialize OpProto Error. This could be a bug of Paddle."); + } + return ret_values; + }); + m.def_submodule( + "var_names", + "The module will return special predefined variable name in Paddle") + .def("empty", pd::OperatorBase::EMPTY_VAR_NAME) + .def("temp", pd::OperatorBase::TMP_VAR_NAME); + + py::class_<pd::OperatorBase, pd::OperatorPtr>(m, "Operator") + .def("__str__", &pd::OperatorBase::DebugString) + .def_static("create", [](const std::string& protobin) { + pd::OpDesc desc; + PADDLE_ENFORCE(desc.ParsePartialFromString(protobin), + "Cannot parse user input to OpDesc"); + PADDLE_ENFORCE(desc.IsInitialized(), + "User OpDesc is not initialized, reason %s", + desc.InitializationErrorString()); + return pd::OpRegistry::CreateOp(desc); + }); + return m.ptr(); } diff --git a/paddle/scripts/docker/build.sh b/paddle/scripts/docker/build.sh index ab60f1a38dd4cd1d9799c0019dccae5f1c7d4310..3860facb099950a5287d3f6b89c3de38f588f568 100644 --- a/paddle/scripts/docker/build.sh +++ b/paddle/scripts/docker/build.sh @@ -155,7 +155,8 @@ RUN apt-get update &&\ paddle version ${DOCKERFILE_CUDNN_DSO} ${DOCKERFILE_GPU_ENV} - +ADD go/cmd/pserver/pserver /usr/bin/ +ADD go/cmd/master/master /usr/bin/ # default command shows the paddle version and exit CMD ["paddle", "version"] EOF diff --git a/paddle/scripts/docker/build_android.sh b/paddle/scripts/docker/build_android.sh index bfa10c91553563bddac8c1b41bf21490fb89d3cf..56d290be4ab04a9f6974023159aa8571d27f8dd5 100644 --- a/paddle/scripts/docker/build_android.sh +++ b/paddle/scripts/docker/build_android.sh @@ -2,9 +2,9 @@ set -xe -mkdir -p /paddle/build -cd /paddle/build -rm -f /paddle/install 2>/dev/null || true +mkdir -p /paddle/build_android +cd /paddle/build_android +rm -rf /paddle/install 2>/dev/null || true cmake -DCMAKE_SYSTEM_NAME=Android \ -DANDROID_STANDALONE_TOOLCHAIN=$ANDROID_STANDALONE_TOOLCHAIN \ -DANDROID_ABI=armeabi-v7a \ @@ -21,6 +21,3 @@ cmake -DCMAKE_SYSTEM_NAME=Android \ .. make -j `nproc` make install - -export PATH=/paddle/install/bin:/paddle/install/opt/paddle/bin:$PATH -paddle version diff --git a/paddle/trainer/NewRemoteParameterUpdater.cpp b/paddle/trainer/NewRemoteParameterUpdater.cpp index b359d9da2167bf459504e15c3140b3d956f417f3..a830ceba5772846cd9255a3eeb26e8d6a17dcfbc 100644 --- a/paddle/trainer/NewRemoteParameterUpdater.cpp +++ b/paddle/trainer/NewRemoteParameterUpdater.cpp @@ -28,6 +28,17 @@ NewRemoteParameterUpdater::NewRemoteParameterUpdater( newGradients_(nullptr), pserverSpec_(pserverSpec) {} +NewRemoteParameterUpdater::NewRemoteParameterUpdater( + const OptimizationConfig &config, + const std::string pserverSpec, + const bool useEtcd) + : trainerConfig_(config), + parameterClient_(-1), + newParameters_(nullptr), + newGradients_(nullptr), + pserverSpec_(pserverSpec), + useEtcd_(useEtcd) {} + void NewRemoteParameterUpdater::init( const std::vector<ParameterPtr> ¶meters) { ParameterUpdater::init(parameters); @@ -38,8 +49,13 @@ void NewRemoteParameterUpdater::init( } // create parameter server client. - parameterClient_ = paddle_new_pserver_client((char *)pserverSpec_.c_str(), - FLAGS_trainer_id == 0); + if (useEtcd_) { + parameterClient_ = paddle_new_etcd_pserver_client( + (char *)pserverSpec_.c_str(), FLAGS_trainer_id == 0); + } else { + parameterClient_ = paddle_new_pserver_client((char *)pserverSpec_.c_str(), + FLAGS_trainer_id == 0); + } // init new parameter and gradient. newParameters_ = initNewParameter(PARAMETER_VALUE); diff --git a/paddle/trainer/NewRemoteParameterUpdater.h b/paddle/trainer/NewRemoteParameterUpdater.h index dfed00bc216b1d41bb7520619b76702f9fe650f2..6223ba427c9b94494c2bee8f0847442f1b0574c9 100644 --- a/paddle/trainer/NewRemoteParameterUpdater.h +++ b/paddle/trainer/NewRemoteParameterUpdater.h @@ -32,6 +32,9 @@ class NewRemoteParameterUpdater : public ParameterUpdater { public: NewRemoteParameterUpdater(const OptimizationConfig& config, const std::string pserverSpec); + NewRemoteParameterUpdater(const OptimizationConfig& config, + const std::string pserverSpec, + const bool useEtcd); ~NewRemoteParameterUpdater() { releaseNewParameter(newParameters_); releaseNewParameter(newGradients_); @@ -111,6 +114,8 @@ protected: paddle_parameter** newGradients_; /// the specification of parameter server "host1:port,host1:port" std::string pserverSpec_; + /// true if pserverSpec_ is etcd endpoint, else pserverSpec_ is pserver addr + bool useEtcd_; }; } // namespace paddle diff --git a/python/paddle/v2/__init__.py b/python/paddle/v2/__init__.py index 3ba5c31871807027e452df5d889b3b403e1c6414..3c75ca4c3abf1e94fc00b87f3af51d1cbf6dc430 100644 --- a/python/paddle/v2/__init__.py +++ b/python/paddle/v2/__init__.py @@ -20,7 +20,6 @@ import trainer import event import data_type import topology -import data_feeder import networks import evaluator from . import dataset @@ -31,7 +30,6 @@ import op import pooling import inference import networks -import py_paddle.swig_paddle as api import minibatch import plot import image @@ -47,7 +45,6 @@ __all__ = [ 'data_type', 'attr', 'pooling', - 'data_feeder', 'dataset', 'reader', 'topology', @@ -61,6 +58,7 @@ __all__ = [ def init(**kwargs): + import py_paddle.swig_paddle as api args = [] args_dict = {} # NOTE: append arguments if they are in ENV diff --git a/python/paddle/v2/data_feeder.py b/python/paddle/v2/data_feeder.py index 2698251b9e15046eb14f71c3f5b0546ecbb4a5dd..98dfb85a0ea57050bf8dd8d46fca9574801d8eb3 100644 --- a/python/paddle/v2/data_feeder.py +++ b/python/paddle/v2/data_feeder.py @@ -11,7 +11,6 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. - from py_paddle import DataProviderConverter import collections import paddle.trainer.PyDataProvider2 as pydp2 diff --git a/python/paddle/v2/dataset/common.py b/python/paddle/v2/dataset/common.py index 4a2eb59c340f5d0d3818170e56d730330e0bab29..645f3cc0dce70752c20569523e4bab440861f6a1 100644 --- a/python/paddle/v2/dataset/common.py +++ b/python/paddle/v2/dataset/common.py @@ -22,6 +22,8 @@ import importlib import paddle.v2.dataset import cPickle import glob +import cPickle as pickle +import random __all__ = [ 'DATA_HOME', 'download', 'md5file', 'split', 'cluster_files_reader', @@ -170,8 +172,6 @@ def convert(output_path, name_prefix, max_lines_to_shuffle=1000): import recordio - import cPickle as pickle - import random """ Convert data from reader to recordio format files. @@ -201,8 +201,10 @@ def convert(output_path, def write_data(w, lines): random.shuffle(lines) for i, d in enumerate(lines): - d = pickle.dumps(d, pickle.HIGHEST_PROTOCOL) - w[i % num_shards].write(d) + # FIXME(Yancey1989): + # dumps with protocol: pickle.HIGHEST_PROTOCOL + o = pickle.dumps(d) + w[i % num_shards].write(o) w = open_writers() lines = [] diff --git a/python/paddle/v2/dataset/mq2007.py b/python/paddle/v2/dataset/mq2007.py index fd71b341662ca6f540ce44a86348e782561a97d7..cffb319ad8f56ccddba3fef63e1b6ec68e5bac1e 100644 --- a/python/paddle/v2/dataset/mq2007.py +++ b/python/paddle/v2/dataset/mq2007.py @@ -212,19 +212,19 @@ def gen_pair(querylist, partial_order="full"): for j in range(i + 1, len(querylist)): query_right = querylist[j] if query_left.relevance_score > query_right.relevance_score: - labels.append(1) + labels.append([1]) docpairs.append([ np.array(query_left.feature_vector), np.array(query_right.feature_vector) ]) elif query_left.relevance_score < query_right.relevance_score: - labels.append(1) + labels.append([1]) docpairs.append([ np.array(query_right.feature_vector), np.array(query_left.feature_vector) ]) for label, pair in zip(labels, docpairs): - yield label, pair[0], pair[1] + yield np.array(label), pair[0], pair[1] def gen_list(querylist): diff --git a/python/paddle/v2/event.py b/python/paddle/v2/event.py index fd6050fa339d280ad54e40128ea6bae25132c873..7589cc9917f26375d595e200245d5ba099bc38d7 100644 --- a/python/paddle/v2/event.py +++ b/python/paddle/v2/event.py @@ -9,8 +9,6 @@ There are: * BeginPass * EndPass """ -import py_paddle.swig_paddle as api - __all__ = [ 'EndIteration', 'BeginIteration', 'BeginPass', 'EndPass', 'TestResult' ] @@ -18,6 +16,7 @@ __all__ = [ class WithMetric(object): def __init__(self, evaluator): + import py_paddle.swig_paddle as api if not isinstance(evaluator, api.Evaluator): raise TypeError("Evaluator should be api.Evaluator type") self.__evaluator__ = evaluator diff --git a/python/paddle/v2/framework/create_op_creation_methods.py b/python/paddle/v2/framework/create_op_creation_methods.py new file mode 100644 index 0000000000000000000000000000000000000000..c2a7ae7692b08762ffbc91726be7bfa90e8ddedb --- /dev/null +++ b/python/paddle/v2/framework/create_op_creation_methods.py @@ -0,0 +1,246 @@ +import paddle.v2.framework.core as core +import paddle.v2.framework.proto.op_proto_pb2 as op_proto_pb2 +import paddle.v2.framework.proto.op_desc_pb2 as op_desc_pb2 +import paddle.v2.framework.proto.attr_type_pb2 as attr_type_pb2 +import cStringIO + + +def get_all_op_protos(): + """ + Get all registered op proto from Paddle C++ + :return: list of OpProto + """ + protostrs = core.get_all_op_protos() + ret_values = [] + for pbstr in protostrs: + op_proto = op_proto_pb2.OpProto.FromString(str(pbstr)) + ret_values.append(op_proto) + return ret_values + + +class OpDescCreationMethod(object): + """ + A Functor object to convert user input(use key word args) to OpDesc based on + OpProto. + + :param op_proto: The OpProto object. + :type op_proto: op_proto_pb2.OpProto + """ + + def __init__(self, op_proto): + if not isinstance(op_proto, op_proto_pb2.OpProto): + raise TypeError("Argument should be OpProto") + self.__op_proto__ = op_proto + + def __call__(self, *args, **kwargs): + """ + Convert user input to OpDesc. Only key-word args are supported. + :return: OpDesc based on user input + :rtype: op_desc_pb2.OpDesc + """ + if len(args) != 0: + raise ValueError("Only keyword arguments is supported by Paddle") + op_desc = op_desc_pb2.OpDesc() + + # Inputs + ipts, ipt_format, _ = OpDescCreationMethod.extract_input_or_output( + "input", kwargs, self.__op_proto__.inputs) + op_desc.inputs.extend(ipts) + if ipt_format is not None: + op_desc.attrs.extend([ipt_format]) + + # Outputs + outs, out_format, tmp_index = OpDescCreationMethod.extract_input_or_output( + "output", kwargs, self.__op_proto__.outputs) + op_desc.outputs.extend(outs) + if out_format is not None: + op_desc.attrs.extend([out_format]) + if len(tmp_index) != 0: + tmp_index_attr = op_desc.attrs.add() + tmp_index_attr.type = attr_type_pb2.INTS + tmp_index_attr.name = "temporary_index" + tmp_index_attr.ints.extend(tmp_index) + + # Types + op_desc.type = self.__op_proto__.type + + # Attrs + for attr in self.__op_proto__.attrs: + if attr.generated: + continue + user_defined_attr = kwargs.get(attr.name, None) + if user_defined_attr is not None: + new_attr = op_desc.attrs.add() + new_attr.name = attr.name + new_attr.type = attr.type + if attr.type == attr_type_pb2.INT: + new_attr.i = user_defined_attr + elif attr.type == attr_type_pb2.FLOAT: + new_attr.f = user_defined_attr + elif attr.type == attr_type_pb2.STRING: + new_attr.s = user_defined_attr + elif attr.type == attr_type_pb2.INTS: + new_attr.ints.extend(user_defined_attr) + elif attr.type == attr_type_pb2.FLOATS: + new_attr.floats.extend(user_defined_attr) + elif attr.type == attr_type_pb2.STRINGS: + new_attr.strings.extend(user_defined_attr) + else: + raise NotImplementedError("Not support attribute type " + + attr.type) + + return op_desc + + @staticmethod + def extract_input_or_output(in_out, kwargs, meta): + """ + Extract input variable names or output variable names from key-word + arguments, which base on VarProtos. + + :param in_out: "input" or "output" + :param kwargs: key-word arguments that user inputted. + :param meta: a list of VarProto + :return: The three object will be return. The variable names. The + input_format or output_format attribute(None if the input or output is + not multiple). The temporary variable index list. + """ + multiple = OpDescCreationMethod.any_is_true((m.multiple for m in meta)) + tmp_index = [] + retv = [] + if multiple: + var_format = op_desc_pb2.AttrDesc() + var_format.type = attr_type_pb2.INTS + var_format.name = "%s_format" % in_out + var_format.ints.append(0) + + for var in meta: + var_name = var.name + + if var.temporary: + var_name = [core.var_names.temp()] + tmp_index.append(len(retv)) + else: + var_name = kwargs.get(var_name, []) + if not isinstance(var_name, list): + var_name = [var_name] + retv.extend(var_name) + var_format.ints.append(len(var_name) + var_format.ints[-1]) + return retv, var_format, tmp_index + else: + for var in meta: + if var.temporary: + retv.append(kwargs.get(var.name, core.var_names.temp())) + tmp_index.append(len(retv)) + else: + retv.append(kwargs.get(var.name, core.var_names.empty())) + return retv, None, tmp_index + + @staticmethod + def any_is_true(generator): + """ + Reduce a bool array to one. If any of them is True, then return True. + """ + for flag in generator: + if flag: + return True + return False + + +def get_docstring_from_op_proto(op_proto): + """ + Generate docstring from a OpProto + :param op_proto: a OpProto instance. + :type op_proto: op_proto_pb2.OpProto + :return: docstring + """ + if not isinstance(op_proto, op_proto_pb2.OpProto): + raise TypeError("Input must be OpProto") + f = cStringIO.StringIO() + f.write(op_proto.comment) + f.write("\n") + + def __append_param__(name, comment, type): + # Maybe replace the following line with template engine is better. + f.write(":param ") + f.write(name) + f.write(": ") + f.write(comment) + f.write("\n") + f.write(":type ") + f.write(name) + f.write(": ") + f.write(type) + f.write("\n") + + for ipt in op_proto.inputs: + __append_param__(ipt.name, ipt.comment, "list | basestr" + if ipt.multiple else "basestr") + + temp_var_prefix = \ + "This is a temporary variable. It does not have to set by user. " + for opt in op_proto.outputs: + __append_param__(opt.name, opt.comment if not opt.temporary else + temp_var_prefix + opt.comment, "list | basestr" + if opt.multiple else "basestr") + + for attr in op_proto.attrs: + attr_type = None + if attr.type == attr_type_pb2.INT: + attr_type = "int" + elif attr.type == attr_type_pb2.FLOAT: + attr_type = "float" + elif attr.type == attr_type_pb2.STRING: + attr_type = "basestr" + elif attr.type == attr_type_pb2.INTS: + attr_type = "list of int" + elif attr.type == attr_type_pb2.FLOATS: + attr_type = "list of float" + elif attr.type == attr_type_pb2.STRINGS: + attr_type = "list of basestr" + + if attr_type is None: + raise RuntimeError("Not supported attribute type " + attr.type) + + __append_param__(attr.name, attr.comment, attr_type) + + return f.getvalue() + + +def create_op_creation_method(op_proto): + """ + Generate op creation method for an OpProto + """ + method = OpDescCreationMethod(op_proto) + + def __impl__(*args, **kwargs): + opdesc = method(*args, **kwargs) + return core.Operator.create(opdesc.SerializeToString()) + + __impl__.__doc__ = get_docstring_from_op_proto(op_proto) + return __impl__ + + +class OpCreationsHolder(object): + """ + A object will holds all op creation methods. + + Use `op_creations.xxx_op` to access them. + """ + pass + + +op_creations = OpCreationsHolder() + + +def __bootstrap__(): + """ + Bootstrap function for this module. It will dynamic create all op creation + methods in runtime. + """ + for op_proto in get_all_op_protos(): + func = create_op_creation_method(op_proto) + func.__name__ = str(op_proto.type) + setattr(op_creations, func.__name__, func) + + +__bootstrap__() diff --git a/python/paddle/v2/framework/tests/CMakeLists.txt b/python/paddle/v2/framework/tests/CMakeLists.txt index 7023e82b5f08eb49fa1fee27118a7907d58312e2..86fc60f26aee0fbdcf4ac4938d20d26d35df57f6 100644 --- a/python/paddle/v2/framework/tests/CMakeLists.txt +++ b/python/paddle/v2/framework/tests/CMakeLists.txt @@ -1,2 +1,2 @@ add_python_test(test_framework test_protobuf.py test_scope.py - test_default_scope_funcs.py) + test_default_scope_funcs.py test_op_creation_methods.py) diff --git a/python/paddle/v2/framework/tests/test_op_creation_methods.py b/python/paddle/v2/framework/tests/test_op_creation_methods.py new file mode 100644 index 0000000000000000000000000000000000000000..41db7c0d535aa920b34d6cc346090a8c15bfb110 --- /dev/null +++ b/python/paddle/v2/framework/tests/test_op_creation_methods.py @@ -0,0 +1,254 @@ +import unittest +import paddle.v2.framework.create_op_creation_methods as creation +import paddle.v2.framework.core as core +import paddle.v2.framework.proto.op_proto_pb2 as op_proto_pb2 +import paddle.v2.framework.proto.op_desc_pb2 as op_desc_pb2 +import paddle.v2.framework.proto.attr_type_pb2 as attr_type_pb2 + + +class TestGetAllProtos(unittest.TestCase): + def test_all(self): + all_protos = creation.get_all_op_protos() + self.assertNotEqual(0, len(all_protos)) + + for each in all_protos: + self.assertTrue(each.IsInitialized()) + + +class TestOpDescCreationMethod(unittest.TestCase): + def test_plain_input_output(self): + op = op_proto_pb2.OpProto() + op.type = "test" + ipt = op.inputs.add() + ipt.name = "X" + ipt.comment = "not matter" + + ipt = op.inputs.add() + ipt.name = "Y" + ipt.comment = "not matter" + + opt = op.outputs.add() + opt.name = "Z" + opt.comment = "not matter" + + op.comment = "not matter" + + self.assertTrue(op.IsInitialized()) + + method = creation.OpDescCreationMethod(op) + output = method(X="a", Y="b", Z="c") + + expected = op_desc_pb2.OpDesc() + expected.type = "test" + expected.inputs.extend(["a", "b"]) + expected.outputs.append("c") + self.assertEqual(expected, output) + + def test_multiple_input_plain_output(self): + op = op_proto_pb2.OpProto() + op.type = "fc" + ipt = op.inputs.add() + ipt.name = "X" + ipt.comment = "" + ipt.multiple = True + + ipt = op.inputs.add() + ipt.name = "W" + ipt.comment = "" + ipt.multiple = True + + ipt = op.inputs.add() + ipt.name = "b" + ipt.comment = "" + + out = op.outputs.add() + out.name = "Y" + out.comment = "" + + op.comment = "" + self.assertTrue(op.IsInitialized()) + method = creation.OpDescCreationMethod(op) + + generated1 = method(X="x", W="w", b="b", Y="y") + expected1 = op_desc_pb2.OpDesc() + expected1.inputs.extend(['x', 'w', 'b']) + expected1.outputs.extend(['y']) + expected1.type = 'fc' + attr = expected1.attrs.add() + attr.name = 'input_format' + attr.type = attr_type_pb2.INTS + attr.ints.extend([0, 1, 2, 3]) + self.assertEqual(expected1, generated1) + + generated2 = method( + X=['x1', 'x2', 'x3'], b='b', W=['w1', 'w2', 'w3'], Y='y') + expected2 = op_desc_pb2.OpDesc() + expected2.inputs.extend(['x1', 'x2', 'x3', 'w1', 'w2', 'w3', 'b']) + expected2.outputs.extend(['y']) + expected2.type = 'fc' + attr = expected2.attrs.add() + attr.name = 'input_format' + attr.type = attr_type_pb2.INTS + attr.ints.extend([0, 3, 6, 7]) + self.assertEqual(expected2, generated2) + + def test_attrs(self): + op = op_proto_pb2.OpProto() + op.type = "test" + ipt = op.inputs.add() + ipt.name = 'X' + ipt.comment = "" + + def __add_attr__(name, type): + attr = op.attrs.add() + attr.name = name + attr.comment = "" + attr.type = type + + __add_attr__("int_attr", attr_type_pb2.INT) + __add_attr__("float_attr", attr_type_pb2.FLOAT) + __add_attr__("string_attr", attr_type_pb2.STRING) + __add_attr__("ints_attr", attr_type_pb2.INTS) + __add_attr__("floats_attr", attr_type_pb2.FLOATS) + __add_attr__("strings_attr", attr_type_pb2.STRINGS) + + op.comment = "" + self.assertTrue(op.IsInitialized()) + + method = creation.OpDescCreationMethod(op) + + generated = method( + X="a", + int_attr=10, + float_attr=3.2, + string_attr="test_str", + ints_attr=[0, 1, 2, 3, 4], + floats_attr=[0.2, 3.2, 4.5], + strings_attr=["a", "b", "c"]) + + expected = op_desc_pb2.OpDesc() + expected.type = "test" + expected.inputs.extend(['a']) + attr = expected.attrs.add() + attr.name = "int_attr" + attr.type = attr_type_pb2.INT + attr.i = 10 + + attr = expected.attrs.add() + attr.name = "float_attr" + attr.type = attr_type_pb2.FLOAT + attr.f = 3.2 + + attr = expected.attrs.add() + attr.name = "string_attr" + attr.type = attr_type_pb2.STRING + attr.s = "test_str" + + attr = expected.attrs.add() + attr.name = "ints_attr" + attr.type = attr_type_pb2.INTS + attr.ints.extend([0, 1, 2, 3, 4]) + + attr = expected.attrs.add() + attr.name = 'floats_attr' + attr.type = attr_type_pb2.FLOATS + attr.floats.extend([0.2, 3.2, 4.5]) + + attr = expected.attrs.add() + attr.name = 'strings_attr' + attr.type = attr_type_pb2.STRINGS + attr.strings.extend(['a', 'b', 'c']) + + self.assertEqual(expected, generated) + + def test_input_temporary_output(self): + op = op_proto_pb2.OpProto() + op.type = "test" + out = op.outputs.add() + out.name = "OUT" + out.comment = "" + + out = op.outputs.add() + out.name = "TMP" + out.comment = "" + out.temporary = True + + out = op.outputs.add() + out.name = "OUT2" + out.comment = "" + op.comment = "" + + method = creation.OpDescCreationMethod(op) + generated = method(OUT="a", OUT2="b") + desc = op_desc_pb2.OpDesc() + desc.outputs.extend(["a", core.var_names.temp(), "b"]) + desc.type = "test" + attr = desc.attrs.add() + attr.name = "temporary_index" + attr.type = attr_type_pb2.INTS + attr.ints.append(2) + self.assertEqual(generated, desc) + + +class TestOpCreationDocStr(unittest.TestCase): + def test_all(self): + op = op_proto_pb2.OpProto() + op.type = "test" + op.comment = """Test Op. + +This op is used for unit test, not a real op. +""" + a = op.inputs.add() + a.name = "a" + a.comment = "Input a for test op" + a.multiple = True + + b = op.inputs.add() + b.name = "b" + b.comment = "Input b for test op" + self.assertTrue(op.IsInitialized()) + + o1 = op.outputs.add() + o1.name = "output" + o1.comment = "The output of test op" + + o2 = op.outputs.add() + o2.name = "temp output" + o2.comment = "The temporary output of test op" + o2.temporary = True + + test_str = op.attrs.add() + test_str.name = "str_attr" + test_str.type = attr_type_pb2.STRING + test_str.comment = "A string attribute for test op" + + actual = creation.get_docstring_from_op_proto(op) + expected_docstring = '''Test Op. + +This op is used for unit test, not a real op. + +:param a: Input a for test op +:type a: list | basestr +:param b: Input b for test op +:type b: basestr +:param output: The output of test op +:type output: basestr +:param temp output: This is a temporary variable. It does not have to set by user. The temporary output of test op +:type temp output: basestr +:param str_attr: A string attribute for test op +:type str_attr: basestr +''' + self.assertEqual(expected_docstring, actual) + + +class TestOpCreations(unittest.TestCase): + def test_all(self): + add_op = creation.op_creations.add_two(X="a", Y="b", Out="z") + self.assertIsNotNone(add_op) + # Invoke C++ DebugString() + self.assertEqual('Op(add_two), inputs:(a, b), outputs:(z).', + str(add_op)) + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/v2/inference.py b/python/paddle/v2/inference.py index 34b7308601390a4ccb0c19ef10d2c7a60b3fa576..40134a3270c3579fd2f6a891af66ff241050f60c 100644 --- a/python/paddle/v2/inference.py +++ b/python/paddle/v2/inference.py @@ -1,9 +1,7 @@ import numpy -import py_paddle.swig_paddle as api import collections import topology import minibatch -from data_feeder import DataFeeder __all__ = ['infer', 'Inference'] @@ -28,6 +26,7 @@ class Inference(object): """ def __init__(self, output_layer, parameters): + import py_paddle.swig_paddle as api topo = topology.Topology(output_layer) gm = api.GradientMachine.createFromConfigProto( topo.proto(), api.CREATE_MODE_TESTING, [api.PARAMETER_VALUE]) @@ -40,6 +39,7 @@ class Inference(object): self.__data_types__ = topo.data_type() def iter_infer(self, input, feeding=None): + from data_feeder import DataFeeder feeder = DataFeeder(self.__data_types__, feeding) batch_size = len(input) diff --git a/python/paddle/v2/master/client.py b/python/paddle/v2/master/client.py index 70f9e43c9683033233d48a750668771a4c7ba045..4c041fb509903008a7a5648a112b2472ed856aea 100644 --- a/python/paddle/v2/master/client.py +++ b/python/paddle/v2/master/client.py @@ -10,8 +10,9 @@ class client(object): client is a client to the master server. """ - def __init__(self, addr, buf_size): - self.c = lib.paddle_new_master_client(addr, buf_size) + def __init__(self, etcd_endpoints, timeout, buf_size): + self.c = lib.paddle_new_etcd_master_client(etcd_endpoints, timeout, + buf_size) def close(self): lib.paddle_release_master_client(self.c) diff --git a/python/paddle/v2/optimizer.py b/python/paddle/v2/optimizer.py index 390c22ee552c506fde1567efba1326a6d735ad2e..ba581980334fec6226a537af2cf53b3465d32c1e 100644 --- a/python/paddle/v2/optimizer.py +++ b/python/paddle/v2/optimizer.py @@ -1,5 +1,3 @@ -import py_paddle.swig_paddle as swig_api - import paddle.trainer_config_helpers.config_parser_utils as config_parser_utils import paddle.trainer_config_helpers.optimizers as v1_optimizers """ @@ -18,6 +16,7 @@ __all__ = [ class Optimizer(object): def __init__(self, **kwargs): + import py_paddle.swig_paddle as swig_api if 'batch_size' in kwargs: del kwargs['batch_size'] # not important for python library. @@ -36,23 +35,27 @@ class Optimizer(object): For each optimizer(SGD, Adam), GradientMachine should enable different buffers. """ + import py_paddle.swig_paddle as swig_api tmp = swig_api.ParameterOptimizer.create(self.__opt_conf__) assert isinstance(tmp, swig_api.ParameterOptimizer) return tmp.getParameterTypes() def __create_local_updater__(self): + import py_paddle.swig_paddle as swig_api return swig_api.ParameterUpdater.createLocalUpdater(self.__opt_conf__) def __create_remote_updater__(self, pass_num, use_sparse_updater): + import py_paddle.swig_paddle as swig_api return swig_api.ParameterUpdater.createRemoteUpdater( self.__opt_conf__, pass_num, use_sparse_updater) - def __create_new_remote_updater__(self, pserver_spec): + def __create_new_remote_updater__(self, pserver_spec, use_etcd): + import py_paddle.swig_paddle as swig_api return swig_api.ParameterUpdater.createNewRemoteUpdater( - self.__opt_conf__, pserver_spec) + self.__opt_conf__, pserver_spec, use_etcd) def create_updater(self, is_local, num_passes, use_sparse_updater, - pserver_spec): + pserver_spec, use_etcd): """ create proper parameter_updater by configuration. :param is_local: create local or remote parameter updater @@ -78,7 +81,7 @@ class Optimizer(object): num_passes, use_sparse_updater) else: parameter_updater = self.__create_new_remote_updater__( - pserver_spec) + pserver_spec, use_etcd) return parameter_updater @@ -268,6 +271,7 @@ ModelAverage = v1_optimizers.ModelAverage L2Regularization = v1_optimizers.L2Regularization if __name__ == '__main__': + import py_paddle.swig_paddle as swig_api swig_api.initPaddle('--use_gpu=false') for opt in [ Momentum(), Adam(), Adamax(), AdaGrad(), DecayedAdaGrad(), diff --git a/python/paddle/v2/parameters.py b/python/paddle/v2/parameters.py index bbaf8bfa979fbbf460561ebf7077b75b9c41a11a..a9cba8ca0b1efd4149463f6c7bf2dcdfbea350c9 100644 --- a/python/paddle/v2/parameters.py +++ b/python/paddle/v2/parameters.py @@ -1,5 +1,4 @@ import numpy as np -import py_paddle.swig_paddle as api from paddle.proto.ParameterConfig_pb2 import ParameterConfig import paddle.trainer.config_parser as cp import struct @@ -124,6 +123,7 @@ class Parameters(object): :return: parameter value :rtype: np.ndarray """ + import py_paddle.swig_paddle as api shape = self.get_shape(key) if len(self.__gradient_machines__) == 0: @@ -223,7 +223,7 @@ class Parameters(object): :type gradient_machine: api.GradientMachine :return: """ - + import py_paddle.swig_paddle as api if not isinstance(gradient_machine, api.GradientMachine): raise ValueError("gradient_machine should be api.GradientMachine") @@ -359,6 +359,7 @@ def __copy_parameter_to_gradient_machine__(gradient_machine, name, arr): :return: :rtype: api.Parameter """ + import py_paddle.swig_paddle as api param = __get_parameter_in_gradient_machine__(gradient_machine, name) vec = param.getBuf(api.PARAMETER_VALUE) assert isinstance(vec, api.Vector) diff --git a/python/paddle/v2/trainer.py b/python/paddle/v2/trainer.py index 96c6c4b89a2f2e2c3ecb95213e0e0191b1998f50..76bae0bb12b6c33f88530386f9cc19ae9b59f457 100644 --- a/python/paddle/v2/trainer.py +++ b/python/paddle/v2/trainer.py @@ -2,12 +2,6 @@ Module Trainer """ import collections -import gzip -import os - -import py_paddle.swig_paddle as api - -from data_feeder import DataFeeder from topology import Topology from . import event as v2_event from . import optimizer as v2_optimizer @@ -51,7 +45,8 @@ class SGD(object): update_equation, extra_layers=None, is_local=True, - pserver_spec=None): + pserver_spec=None, + use_etcd=True): if not isinstance(parameters, v2_parameters.Parameters): raise TypeError('parameters should be parameters') @@ -59,6 +54,7 @@ class SGD(object): if not isinstance(update_equation, v2_optimizer.Optimizer): raise TypeError("update equation parameter must be " "paddle.v2.optimizer.Optimizer") + import py_paddle.swig_paddle as api topology = Topology(cost, extra_layers=extra_layers) self.__optimizer__ = update_equation self.__topology__ = topology @@ -66,6 +62,7 @@ class SGD(object): self.__topology_in_proto__ = topology.proto() self.__is_local__ = is_local self.__pserver_spec__ = pserver_spec + self.__use_etcd__ = use_etcd self.__use_sparse_updater__ = self.__topology__.use_sparse_updater() # # In local mode, disable sparse_remote_update. @@ -124,13 +121,15 @@ class SGD(object): :type feeding: dict|list :return: """ + import py_paddle.swig_paddle as api + from data_feeder import DataFeeder if event_handler is None: event_handler = default_event_handler __check_train_args__(**locals()) self.__parameter_updater__ = self.__optimizer__.create_updater( self.__is_local__, num_passes, self.__use_sparse_updater__, - self.__pserver_spec__) + self.__pserver_spec__, self.__use_etcd__) self.__parameter_updater__.init(self.__gradient_machine__) self.__gradient_machine__.start() @@ -187,6 +186,8 @@ class SGD(object): :type feeding: dict :return: """ + import py_paddle.swig_paddle as api + from data_feeder import DataFeeder feeder = DataFeeder(self.__data_types__, feeding) evaluator = self.__gradient_machine__.makeEvaluator() out_args = api.Arguments.createArguments(0) diff --git a/python/setup.py.in b/python/setup.py.in index 271ee6e5526981ad94710315d1472b0f4069a1aa..b1041f6102a56f5a200aa909e77729095c052f31 100644 --- a/python/setup.py.in +++ b/python/setup.py.in @@ -19,7 +19,8 @@ setup_requires=["requests", "recordio", "matplotlib", "rarfile", - "scipy>=0.19.0"] + "scipy>=0.19.0", + "nltk"] if '${CMAKE_SYSTEM_PROCESSOR}' not in ['arm', 'armv7-a', 'aarch64']: setup_requires+=["opencv-python"]