Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
1c57d554
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1c57d554
编写于
9月 23, 2020
作者:
M
MrChengmo
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
ps_graph support ps-gpu
上级
4efcb9df
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
34 addition
and
20 deletion
+34
-20
python/paddle/distributed/fleet/base/distributed_strategy.py
python/paddle/distributed/fleet/base/distributed_strategy.py
+13
-13
python/paddle/distributed/fleet/base/role_maker.py
python/paddle/distributed/fleet/base/role_maker.py
+17
-7
python/paddle/distributed/fleet/meta_optimizers/parameter_server_graph_optimizer.py
...fleet/meta_optimizers/parameter_server_graph_optimizer.py
+4
-0
未找到文件。
python/paddle/distributed/fleet/base/distributed_strategy.py
浏览文件 @
1c57d554
...
@@ -107,7 +107,7 @@ class DistributedStrategy(object):
...
@@ -107,7 +107,7 @@ class DistributedStrategy(object):
All of the distributed training configurations can be configured in DistributedStrategy,
All of the distributed training configurations can be configured in DistributedStrategy,
such as automatic mixed precision (AMP), Layer-wise Adaptive Rate Scaling (LARS),
such as automatic mixed precision (AMP), Layer-wise Adaptive Rate Scaling (LARS),
asynchronous update parameter server(ASGD), etc.
asynchronous update parameter server(ASGD), etc.
DistributedStrategy can be serialized into protobuf file or deserialized from protobuf file
DistributedStrategy can be serialized into protobuf file or deserialized from protobuf file
Users who run local training usually configure BuildStrategy and ExecutionStrategy, and
Users who run local training usually configure BuildStrategy and ExecutionStrategy, and
...
@@ -129,7 +129,7 @@ class DistributedStrategy(object):
...
@@ -129,7 +129,7 @@ class DistributedStrategy(object):
Examples:
Examples:
.. code-block:: python
.. code-block:: python
import paddle.distributed.fleet as fleet
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy = fleet.DistributedStrategy()
strategy.dgc = True
strategy.dgc = True
...
@@ -207,7 +207,7 @@ class DistributedStrategy(object):
...
@@ -207,7 +207,7 @@ class DistributedStrategy(object):
build_strategy.fuse_broadcast_ops = True
build_strategy.fuse_broadcast_ops = True
build_strategy.fuse_all_optimizer_ops = True
build_strategy.fuse_all_optimizer_ops = True
build_strategy.enable_inplace = True
build_strategy.enable_inplace = True
strategy = paddle.distributed.fleet.DistributedStrategy()
strategy = paddle.distributed.fleet.DistributedStrategy()
strategy.build_strategy = build_strategy
strategy.build_strategy = build_strategy
"""
"""
...
@@ -248,7 +248,7 @@ class DistributedStrategy(object):
...
@@ -248,7 +248,7 @@ class DistributedStrategy(object):
strategy = fleet.DistributedStrategy()
strategy = fleet.DistributedStrategy()
strategy.a_sync = True # by default this is True
strategy.a_sync = True # by default this is True
# code block for defining loss and local optimizer
# code block for defining loss and local optimizer
# sgd = fleet.distributed_optimizer(optimizer, strategy)
# sgd = fleet.distributed_optimizer(optimizer, strategy)
"""
"""
...
@@ -259,7 +259,7 @@ class DistributedStrategy(object):
...
@@ -259,7 +259,7 @@ class DistributedStrategy(object):
def
a_sync
(
self
,
flag
):
def
a_sync
(
self
,
flag
):
if
isinstance
(
flag
,
bool
):
if
isinstance
(
flag
,
bool
):
self
.
strategy
.
a_sync
=
flag
self
.
strategy
.
a_sync
=
flag
self
.
a_sync_configs
=
{
"k_steps"
:
0
}
self
.
a_sync_configs
=
{
"k_steps"
:
0
,
"worker_device"
:
'cpu'
}
else
:
else
:
raise
ValueError
(
raise
ValueError
(
"The type of `flag` is invalid, expected type is bool, but received %s"
.
"The type of `flag` is invalid, expected type is bool, but received %s"
.
...
@@ -472,7 +472,7 @@ class DistributedStrategy(object):
...
@@ -472,7 +472,7 @@ class DistributedStrategy(object):
def
sync_batch_norm
(
self
):
def
sync_batch_norm
(
self
):
"""
"""
Indicating whether we are using sync_batch_norm to do synchronous batch normalization among all training nodes.
Indicating whether we are using sync_batch_norm to do synchronous batch normalization among all training nodes.
Default value: False
Default value: False
Examples:
Examples:
...
@@ -525,7 +525,7 @@ class DistributedStrategy(object):
...
@@ -525,7 +525,7 @@ class DistributedStrategy(object):
Examples:
Examples:
.. code-block:: python
.. code-block:: python
import paddle.distributed.fleet as fleet
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy = fleet.DistributedStrategy()
strategy.fuse_grad_size_in_MB = 50
strategy.fuse_grad_size_in_MB = 50
...
@@ -563,7 +563,7 @@ class DistributedStrategy(object):
...
@@ -563,7 +563,7 @@ class DistributedStrategy(object):
Examples:
Examples:
.. code-block:: python
.. code-block:: python
import paddle.distributed.fleet as fleet
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy = fleet.DistributedStrategy()
strategy.nccl_comm_num = 2
strategy.nccl_comm_num = 2
...
@@ -595,7 +595,7 @@ class DistributedStrategy(object):
...
@@ -595,7 +595,7 @@ class DistributedStrategy(object):
Examples:
Examples:
.. code-block:: python
.. code-block:: python
import paddle.distributed.fleet as fleet
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy = fleet.DistributedStrategy()
strategy.recompute = True
strategy.recompute = True
...
@@ -621,7 +621,7 @@ class DistributedStrategy(object):
...
@@ -621,7 +621,7 @@ class DistributedStrategy(object):
Examples:
Examples:
.. code-block:: python
.. code-block:: python
import paddle.distributed.fleet as fleet
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy = fleet.DistributedStrategy()
strategy.pipeline = True
strategy.pipeline = True
...
@@ -656,7 +656,7 @@ class DistributedStrategy(object):
...
@@ -656,7 +656,7 @@ class DistributedStrategy(object):
Examples:
Examples:
.. code-block:: python
.. code-block:: python
import paddle.distributed.fleet as fleet
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy = fleet.DistributedStrategy()
strategy.pipeline = True
strategy.pipeline = True
...
@@ -971,7 +971,7 @@ class DistributedStrategy(object):
...
@@ -971,7 +971,7 @@ class DistributedStrategy(object):
[Large Batch Optimization for Deep Learning: Training BERT in 76 minutes](https://arxiv.org/abs/1904.00962).
[Large Batch Optimization for Deep Learning: Training BERT in 76 minutes](https://arxiv.org/abs/1904.00962).
Default Value: False
Default Value: False
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -1114,7 +1114,7 @@ class DistributedStrategy(object):
...
@@ -1114,7 +1114,7 @@ class DistributedStrategy(object):
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
optimizer = fleet.distributed_optimizer(optimizer, strategy)
optimizer = fleet.distributed_optimizer(optimizer, strategy)
"""
"""
return
self
.
strategy
.
conv_workspace_size_limit
return
self
.
strategy
.
conv_workspace_size_limit
...
...
python/paddle/distributed/fleet/base/role_maker.py
浏览文件 @
1c57d554
...
@@ -681,8 +681,12 @@ class PaddleCloudRoleMaker(RoleMakerBase):
...
@@ -681,8 +681,12 @@ class PaddleCloudRoleMaker(RoleMakerBase):
else
:
else
:
self
.
_worker_endpoints
=
[]
self
.
_worker_endpoints
=
[]
trainers_num
=
int
(
os
.
environ
[
"PADDLE_TRAINERS_NUM"
])
trainers_num
=
os
.
getenv
(
"PADDLE_TRAINERS_NUM"
,
None
)
training_role
=
os
.
environ
[
"TRAINING_ROLE"
]
assert
trainers_num
!=
None
trainers_num
=
int
(
trainers_num
)
training_role
=
os
.
getenv
(
"TRAINING_ROLE"
,
None
)
assert
training_role
!=
None
if
training_role
not
in
[
"TRAINER"
,
"PSERVER"
,
"HETER_TRAINER"
]:
if
training_role
not
in
[
"TRAINER"
,
"PSERVER"
,
"HETER_TRAINER"
]:
raise
ValueError
(
raise
ValueError
(
...
@@ -716,19 +720,25 @@ class PaddleCloudRoleMaker(RoleMakerBase):
...
@@ -716,19 +720,25 @@ class PaddleCloudRoleMaker(RoleMakerBase):
if
training_role
==
"TRAINER"
:
if
training_role
==
"TRAINER"
:
role
=
Role
.
WORKER
role
=
Role
.
WORKER
current_id
=
int
(
os
.
environ
[
"PADDLE_TRAINER_ID"
])
current_id
=
os
.
getenv
(
"PADDLE_TRAINER_ID"
,
None
)
assert
current_id
!=
None
current_id
=
int
(
current_id
)
if
len
(
self
.
_worker_endpoints
)
>
0
:
if
len
(
self
.
_worker_endpoints
)
>
0
:
self
.
_cur_endpoint
=
self
.
_worker_endpoints
[
current_id
]
self
.
_cur_endpoint
=
self
.
_worker_endpoints
[
current_id
]
elif
training_role
==
"PSERVER"
:
elif
training_role
==
"PSERVER"
:
role
=
Role
.
SERVER
role
=
Role
.
SERVER
port
=
os
.
environ
[
"PADDLE_PORT"
]
port
=
os
.
getenv
(
"PADDLE_PORT"
,
None
)
ip
=
os
.
environ
[
"POD_IP"
]
assert
port
!=
None
ip
=
os
.
getenv
(
"POD_IP"
,
None
)
assert
ip
!=
None
self
.
_cur_endpoint
=
ip
+
":"
+
port
self
.
_cur_endpoint
=
ip
+
":"
+
port
current_id
=
self
.
_server_endpoints
.
index
(
self
.
_cur_endpoint
)
current_id
=
self
.
_server_endpoints
.
index
(
self
.
_cur_endpoint
)
elif
training_role
==
"HETER_TRAINER"
:
elif
training_role
==
"HETER_TRAINER"
:
role
=
Role
.
HETER_WORKER
role
=
Role
.
HETER_WORKER
cur_ip
=
os
.
environ
[
"POD_IP"
]
cur_port
=
os
.
getenv
(
"PADDLE_PORT"
,
None
)
cur_port
=
os
.
environ
[
"PADDLE_PORT"
]
assert
port
!=
None
cur_ip
=
os
.
getenv
(
"POD_IP"
,
None
)
assert
cur_ip
!=
None
curr_endpoint
=
":"
.
join
([
cur_ip
,
cur_port
])
curr_endpoint
=
":"
.
join
([
cur_ip
,
cur_port
])
current_id
=
heter_trainer_eplist
.
index
(
curr_endpoint
)
current_id
=
heter_trainer_eplist
.
index
(
curr_endpoint
)
else
:
else
:
...
...
python/paddle/distributed/fleet/meta_optimizers/parameter_server_graph_optimizer.py
浏览文件 @
1c57d554
...
@@ -31,6 +31,10 @@ class ParameterServerGraphOptimizer(ParameterServerOptimizer):
...
@@ -31,6 +31,10 @@ class ParameterServerGraphOptimizer(ParameterServerOptimizer):
if
k_steps
<
0
:
if
k_steps
<
0
:
return
False
return
False
device
=
self
.
user_defined_strategy
.
a_sync_configs
[
"worker_device"
]
if
device
.
upper
()
!=
'CPU'
:
return
False
if
self
.
role_maker
.
_is_server
():
if
self
.
role_maker
.
_is_server
():
return
False
return
False
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录