提交 1c57d554 编写于 作者: M MrChengmo

ps_graph support ps-gpu

上级 4efcb9df
......@@ -107,7 +107,7 @@ class DistributedStrategy(object):
All of the distributed training configurations can be configured in DistributedStrategy,
such as automatic mixed precision (AMP), Layer-wise Adaptive Rate Scaling (LARS),
asynchronous update parameter server(ASGD), etc.
DistributedStrategy can be serialized into protobuf file or deserialized from protobuf file
Users who run local training usually configure BuildStrategy and ExecutionStrategy, and
......@@ -129,7 +129,7 @@ class DistributedStrategy(object):
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.dgc = True
......@@ -207,7 +207,7 @@ class DistributedStrategy(object):
build_strategy.fuse_broadcast_ops = True
build_strategy.fuse_all_optimizer_ops = True
build_strategy.enable_inplace = True
strategy = paddle.distributed.fleet.DistributedStrategy()
strategy.build_strategy = build_strategy
"""
......@@ -248,7 +248,7 @@ class DistributedStrategy(object):
strategy = fleet.DistributedStrategy()
strategy.a_sync = True # by default this is True
# code block for defining loss and local optimizer
# sgd = fleet.distributed_optimizer(optimizer, strategy)
"""
......@@ -259,7 +259,7 @@ class DistributedStrategy(object):
def a_sync(self, flag):
if isinstance(flag, bool):
self.strategy.a_sync = flag
self.a_sync_configs = {"k_steps": 0}
self.a_sync_configs = {"k_steps": 0, "worker_device": 'cpu'}
else:
raise ValueError(
"The type of `flag` is invalid, expected type is bool, but received %s".
......@@ -472,7 +472,7 @@ class DistributedStrategy(object):
def sync_batch_norm(self):
"""
Indicating whether we are using sync_batch_norm to do synchronous batch normalization among all training nodes.
Default value: False
Examples:
......@@ -525,7 +525,7 @@ class DistributedStrategy(object):
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.fuse_grad_size_in_MB = 50
......@@ -563,7 +563,7 @@ class DistributedStrategy(object):
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.nccl_comm_num = 2
......@@ -595,7 +595,7 @@ class DistributedStrategy(object):
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.recompute = True
......@@ -621,7 +621,7 @@ class DistributedStrategy(object):
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.pipeline = True
......@@ -656,7 +656,7 @@ class DistributedStrategy(object):
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.pipeline = True
......@@ -971,7 +971,7 @@ class DistributedStrategy(object):
[Large Batch Optimization for Deep Learning: Training BERT in 76 minutes](https://arxiv.org/abs/1904.00962).
Default Value: False
Examples:
.. code-block:: python
......@@ -1114,7 +1114,7 @@ class DistributedStrategy(object):
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
optimizer = fleet.distributed_optimizer(optimizer, strategy)
"""
return self.strategy.conv_workspace_size_limit
......
......@@ -681,8 +681,12 @@ class PaddleCloudRoleMaker(RoleMakerBase):
else:
self._worker_endpoints = []
trainers_num = int(os.environ["PADDLE_TRAINERS_NUM"])
training_role = os.environ["TRAINING_ROLE"]
trainers_num = os.getenv("PADDLE_TRAINERS_NUM", None)
assert trainers_num != None
trainers_num = int(trainers_num)
training_role = os.getenv("TRAINING_ROLE", None)
assert training_role != None
if training_role not in ["TRAINER", "PSERVER", "HETER_TRAINER"]:
raise ValueError(
......@@ -716,19 +720,25 @@ class PaddleCloudRoleMaker(RoleMakerBase):
if training_role == "TRAINER":
role = Role.WORKER
current_id = int(os.environ["PADDLE_TRAINER_ID"])
current_id = os.getenv("PADDLE_TRAINER_ID", None)
assert current_id != None
current_id = int(current_id)
if len(self._worker_endpoints) > 0:
self._cur_endpoint = self._worker_endpoints[current_id]
elif training_role == "PSERVER":
role = Role.SERVER
port = os.environ["PADDLE_PORT"]
ip = os.environ["POD_IP"]
port = os.getenv("PADDLE_PORT", None)
assert port != None
ip = os.getenv("POD_IP", None)
assert ip != None
self._cur_endpoint = ip + ":" + port
current_id = self._server_endpoints.index(self._cur_endpoint)
elif training_role == "HETER_TRAINER":
role = Role.HETER_WORKER
cur_ip = os.environ["POD_IP"]
cur_port = os.environ["PADDLE_PORT"]
cur_port = os.getenv("PADDLE_PORT", None)
assert port != None
cur_ip = os.getenv("POD_IP", None)
assert cur_ip != None
curr_endpoint = ":".join([cur_ip, cur_port])
current_id = heter_trainer_eplist.index(curr_endpoint)
else:
......
......@@ -31,6 +31,10 @@ class ParameterServerGraphOptimizer(ParameterServerOptimizer):
if k_steps < 0:
return False
device = self.user_defined_strategy.a_sync_configs["worker_device"]
if device.upper() != 'CPU':
return False
if self.role_maker._is_server():
return False
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册