未验证 提交 172e76a8 编写于 作者: L LielinJiang 提交者: GitHub

transform add pil backend (#28132)

上级 f63f8d73
...@@ -105,7 +105,7 @@ class TestCallbacks(unittest.TestCase): ...@@ -105,7 +105,7 @@ class TestCallbacks(unittest.TestCase):
self.run_callback() self.run_callback()
def test_visualdl_callback(self): def test_visualdl_callback(self):
# visualdl not support python3 # visualdl not support python2
if sys.version_info < (3, ): if sys.version_info < (3, ):
return return
......
...@@ -18,14 +18,19 @@ import tempfile ...@@ -18,14 +18,19 @@ import tempfile
import cv2 import cv2
import shutil import shutil
import numpy as np import numpy as np
from PIL import Image
import paddle
from paddle.vision import get_image_backend, set_image_backend, image_load
from paddle.vision.datasets import DatasetFolder from paddle.vision.datasets import DatasetFolder
from paddle.vision.transforms import transforms from paddle.vision.transforms import transforms
import paddle.vision.transforms.functional as F import paddle.vision.transforms.functional as F
class TestTransforms(unittest.TestCase): class TestTransformsCV2(unittest.TestCase):
def setUp(self): def setUp(self):
self.backend = self.get_backend()
set_image_backend(self.backend)
self.data_dir = tempfile.mkdtemp() self.data_dir = tempfile.mkdtemp()
for i in range(2): for i in range(2):
sub_dir = os.path.join(self.data_dir, 'class_' + str(i)) sub_dir = os.path.join(self.data_dir, 'class_' + str(i))
...@@ -40,6 +45,22 @@ class TestTransforms(unittest.TestCase): ...@@ -40,6 +45,22 @@ class TestTransforms(unittest.TestCase):
(400, 300, 3)) * 255).astype('uint8') (400, 300, 3)) * 255).astype('uint8')
cv2.imwrite(os.path.join(sub_dir, str(j) + '.jpg'), fake_img) cv2.imwrite(os.path.join(sub_dir, str(j) + '.jpg'), fake_img)
def get_backend(self):
return 'cv2'
def create_image(self, shape):
if self.backend == 'cv2':
return (np.random.rand(*shape) * 255).astype('uint8')
elif self.backend == 'pil':
return Image.fromarray((np.random.rand(*shape) * 255).astype(
'uint8'))
def get_shape(self, img):
if self.backend == 'pil':
return np.array(img).shape
return img.shape
def tearDown(self): def tearDown(self):
shutil.rmtree(self.data_dir) shutil.rmtree(self.data_dir)
...@@ -51,27 +72,29 @@ class TestTransforms(unittest.TestCase): ...@@ -51,27 +72,29 @@ class TestTransforms(unittest.TestCase):
def test_trans_all(self): def test_trans_all(self):
normalize = transforms.Normalize( normalize = transforms.Normalize(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.120, 57.375]) mean=[123.675, 116.28, 103.53],
std=[58.395, 57.120, 57.375], )
trans = transforms.Compose([ trans = transforms.Compose([
transforms.RandomResizedCrop(224), transforms.GaussianNoise(), transforms.RandomResizedCrop(224),
transforms.ColorJitter( transforms.ColorJitter(
brightness=0.4, contrast=0.4, saturation=0.4, brightness=0.4, contrast=0.4, saturation=0.4, hue=0.4),
hue=0.4), transforms.RandomHorizontalFlip(), transforms.RandomHorizontalFlip(),
transforms.Permute(mode='CHW'), normalize transforms.Transpose(),
normalize,
]) ])
self.do_transform(trans) self.do_transform(trans)
def test_normalize(self): def test_normalize(self):
normalize = transforms.Normalize(mean=0.5, std=0.5) normalize = transforms.Normalize(mean=0.5, std=0.5)
trans = transforms.Compose([transforms.Permute(mode='CHW'), normalize]) trans = transforms.Compose([transforms.Transpose(), normalize])
self.do_transform(trans) self.do_transform(trans)
def test_trans_resize(self): def test_trans_resize(self):
trans = transforms.Compose([ trans = transforms.Compose([
transforms.Resize(300, [0, 1]), transforms.Resize(300),
transforms.RandomResizedCrop((280, 280)), transforms.RandomResizedCrop((280, 280)),
transforms.Resize(280, [0, 1]), transforms.Resize(280),
transforms.Resize((256, 200)), transforms.Resize((256, 200)),
transforms.Resize((180, 160)), transforms.Resize((180, 160)),
transforms.CenterCrop(128), transforms.CenterCrop(128),
...@@ -79,13 +102,6 @@ class TestTransforms(unittest.TestCase): ...@@ -79,13 +102,6 @@ class TestTransforms(unittest.TestCase):
]) ])
self.do_transform(trans) self.do_transform(trans)
def test_trans_centerCrop(self):
trans = transforms.Compose([
transforms.CenterCropResize(224),
transforms.CenterCropResize(128, 160),
])
self.do_transform(trans)
def test_flip(self): def test_flip(self):
trans = transforms.Compose([ trans = transforms.Compose([
transforms.RandomHorizontalFlip(1.0), transforms.RandomHorizontalFlip(1.0),
...@@ -96,7 +112,7 @@ class TestTransforms(unittest.TestCase): ...@@ -96,7 +112,7 @@ class TestTransforms(unittest.TestCase):
self.do_transform(trans) self.do_transform(trans)
def test_color_jitter(self): def test_color_jitter(self):
trans = transforms.BatchCompose([ trans = transforms.Compose([
transforms.BrightnessTransform(0.0), transforms.BrightnessTransform(0.0),
transforms.HueTransform(0.0), transforms.HueTransform(0.0),
transforms.SaturationTransform(0.0), transforms.SaturationTransform(0.0),
...@@ -106,11 +122,11 @@ class TestTransforms(unittest.TestCase): ...@@ -106,11 +122,11 @@ class TestTransforms(unittest.TestCase):
def test_rotate(self): def test_rotate(self):
trans = transforms.Compose([ trans = transforms.Compose([
transforms.RandomRotate(90), transforms.RandomRotation(90),
transforms.RandomRotate([-10, 10]), transforms.RandomRotation([-10, 10]),
transforms.RandomRotate( transforms.RandomRotation(
45, expand=True), 45, expand=True),
transforms.RandomRotate( transforms.RandomRotation(
10, expand=True, center=(60, 80)), 10, expand=True, center=(60, 80)),
]) ])
self.do_transform(trans) self.do_transform(trans)
...@@ -119,20 +135,15 @@ class TestTransforms(unittest.TestCase): ...@@ -119,20 +135,15 @@ class TestTransforms(unittest.TestCase):
trans = transforms.Compose([transforms.Pad(2)]) trans = transforms.Compose([transforms.Pad(2)])
self.do_transform(trans) self.do_transform(trans)
fake_img = np.random.rand(200, 150, 3).astype('float32') fake_img = self.create_image((200, 150, 3))
trans_pad = transforms.Pad(10) trans_pad = transforms.Pad(10)
fake_img_padded = trans_pad(fake_img) fake_img_padded = trans_pad(fake_img)
np.testing.assert_equal(fake_img_padded.shape, (220, 170, 3)) np.testing.assert_equal(self.get_shape(fake_img_padded), (220, 170, 3))
trans_pad1 = transforms.Pad([1, 2]) trans_pad1 = transforms.Pad([1, 2])
trans_pad2 = transforms.Pad([1, 2, 3, 4]) trans_pad2 = transforms.Pad([1, 2, 3, 4])
img = trans_pad1(fake_img) img = trans_pad1(fake_img)
img = trans_pad2(img) img = trans_pad2(img)
def test_erase(self):
trans = transforms.Compose(
[transforms.RandomErasing(), transforms.RandomErasing(value=0.0)])
self.do_transform(trans)
def test_random_crop(self): def test_random_crop(self):
trans = transforms.Compose([ trans = transforms.Compose([
transforms.RandomCrop(200), transforms.RandomCrop(200),
...@@ -143,18 +154,19 @@ class TestTransforms(unittest.TestCase): ...@@ -143,18 +154,19 @@ class TestTransforms(unittest.TestCase):
trans_random_crop1 = transforms.RandomCrop(224) trans_random_crop1 = transforms.RandomCrop(224)
trans_random_crop2 = transforms.RandomCrop((140, 160)) trans_random_crop2 = transforms.RandomCrop((140, 160))
fake_img = np.random.rand(500, 400, 3).astype('float32') fake_img = self.create_image((500, 400, 3))
fake_img_crop1 = trans_random_crop1(fake_img) fake_img_crop1 = trans_random_crop1(fake_img)
fake_img_crop2 = trans_random_crop2(fake_img_crop1) fake_img_crop2 = trans_random_crop2(fake_img_crop1)
np.testing.assert_equal(fake_img_crop1.shape, (224, 224, 3)) np.testing.assert_equal(self.get_shape(fake_img_crop1), (224, 224, 3))
np.testing.assert_equal(fake_img_crop2.shape, (140, 160, 3)) np.testing.assert_equal(self.get_shape(fake_img_crop2), (140, 160, 3))
trans_random_crop_same = transforms.RandomCrop((140, 160)) trans_random_crop_same = transforms.RandomCrop((140, 160))
img = trans_random_crop_same(fake_img_crop2) img = trans_random_crop_same(fake_img_crop2)
trans_random_crop_bigger = transforms.RandomCrop((180, 200)) trans_random_crop_bigger = transforms.RandomCrop(
(180, 200), pad_if_needed=True)
img = trans_random_crop_bigger(img) img = trans_random_crop_bigger(img)
trans_random_crop_pad = transforms.RandomCrop((224, 256), 2, True) trans_random_crop_pad = transforms.RandomCrop((224, 256), 2, True)
...@@ -165,21 +177,38 @@ class TestTransforms(unittest.TestCase): ...@@ -165,21 +177,38 @@ class TestTransforms(unittest.TestCase):
self.do_transform(trans) self.do_transform(trans)
trans_gray = transforms.Grayscale() trans_gray = transforms.Grayscale()
fake_img = np.random.rand(500, 400, 3).astype('float32') fake_img = self.create_image((500, 400, 3))
fake_img_gray = trans_gray(fake_img) fake_img_gray = trans_gray(fake_img)
np.testing.assert_equal(len(fake_img_gray.shape), 3) np.testing.assert_equal(self.get_shape(fake_img_gray)[0], 500)
np.testing.assert_equal(fake_img_gray.shape[0], 500) np.testing.assert_equal(self.get_shape(fake_img_gray)[1], 400)
np.testing.assert_equal(fake_img_gray.shape[1], 400)
trans_gray3 = transforms.Grayscale(3) trans_gray3 = transforms.Grayscale(3)
fake_img = np.random.rand(500, 400, 3).astype('float32') fake_img = self.create_image((500, 400, 3))
fake_img_gray = trans_gray3(fake_img) fake_img_gray = trans_gray3(fake_img)
def test_tranpose(self):
trans = transforms.Compose([transforms.Transpose()])
self.do_transform(trans)
fake_img = self.create_image((50, 100, 3))
converted_img = trans(fake_img)
np.testing.assert_equal(self.get_shape(converted_img), (3, 50, 100))
def test_to_tensor(self):
trans = transforms.Compose([transforms.ToTensor()])
fake_img = self.create_image((50, 100, 3))
tensor = trans(fake_img)
assert isinstance(tensor, paddle.Tensor)
np.testing.assert_equal(tensor.shape, (3, 50, 100))
def test_exception(self): def test_exception(self):
trans = transforms.Compose([transforms.Resize(-1)]) trans = transforms.Compose([transforms.Resize(-1)])
trans_batch = transforms.BatchCompose([transforms.Resize(-1)]) trans_batch = transforms.Compose([transforms.Resize(-1)])
with self.assertRaises(Exception): with self.assertRaises(Exception):
self.do_transform(trans) self.do_transform(trans)
...@@ -203,35 +232,211 @@ class TestTransforms(unittest.TestCase): ...@@ -203,35 +232,211 @@ class TestTransforms(unittest.TestCase):
transforms.Pad([1.0, 2.0, 3.0]) transforms.Pad([1.0, 2.0, 3.0])
with self.assertRaises(TypeError): with self.assertRaises(TypeError):
fake_img = np.random.rand(100, 120, 3).astype('float32') fake_img = self.create_image((100, 120, 3))
F.pad(fake_img, '1') F.pad(fake_img, '1')
with self.assertRaises(TypeError): with self.assertRaises(TypeError):
fake_img = np.random.rand(100, 120, 3).astype('float32') fake_img = self.create_image((100, 120, 3))
F.pad(fake_img, 1, {}) F.pad(fake_img, 1, {})
with self.assertRaises(TypeError): with self.assertRaises(TypeError):
fake_img = np.random.rand(100, 120, 3).astype('float32') fake_img = self.create_image((100, 120, 3))
F.pad(fake_img, 1, padding_mode=-1) F.pad(fake_img, 1, padding_mode=-1)
with self.assertRaises(ValueError): with self.assertRaises(ValueError):
fake_img = np.random.rand(100, 120, 3).astype('float32') fake_img = self.create_image((100, 120, 3))
F.pad(fake_img, [1.0, 2.0, 3.0]) F.pad(fake_img, [1.0, 2.0, 3.0])
with self.assertRaises(ValueError): with self.assertRaises(ValueError):
transforms.RandomRotate(-2) transforms.RandomRotation(-2)
with self.assertRaises(ValueError): with self.assertRaises(ValueError):
transforms.RandomRotate([1, 2, 3]) transforms.RandomRotation([1, 2, 3])
with self.assertRaises(ValueError): with self.assertRaises(ValueError):
trans_gray = transforms.Grayscale(5) trans_gray = transforms.Grayscale(5)
fake_img = np.random.rand(100, 120, 3).astype('float32') fake_img = self.create_image((100, 120, 3))
trans_gray(fake_img) trans_gray(fake_img)
with self.assertRaises(TypeError):
transform = transforms.RandomResizedCrop(64)
transform(1)
with self.assertRaises(ValueError):
transform = transforms.BrightnessTransform([-0.1, -0.2])
with self.assertRaises(TypeError):
transform = transforms.BrightnessTransform('0.1')
with self.assertRaises(ValueError):
transform = transforms.BrightnessTransform('0.1', keys=1)
with self.assertRaises(NotImplementedError):
transform = transforms.BrightnessTransform('0.1', keys='a')
def test_info(self): def test_info(self):
str(transforms.Compose([transforms.Resize((224, 224))])) str(transforms.Compose([transforms.Resize((224, 224))]))
str(transforms.BatchCompose([transforms.Resize((224, 224))])) str(transforms.Compose([transforms.Resize((224, 224))]))
class TestTransformsPIL(TestTransformsCV2):
def get_backend(self):
return 'pil'
class TestFunctional(unittest.TestCase):
def test_errors(self):
with self.assertRaises(TypeError):
F.to_tensor(1)
with self.assertRaises(ValueError):
fake_img = Image.fromarray((np.random.rand(28, 28, 3) * 255).astype(
'uint8'))
F.to_tensor(fake_img, data_format=1)
with self.assertRaises(TypeError):
fake_img = Image.fromarray((np.random.rand(28, 28, 3) * 255).astype(
'uint8'))
F.resize(fake_img, '1')
with self.assertRaises(TypeError):
F.resize(1, 1)
with self.assertRaises(TypeError):
F.pad(1, 1)
with self.assertRaises(TypeError):
F.crop(1, 1, 1, 1, 1)
with self.assertRaises(TypeError):
F.hflip(1)
with self.assertRaises(TypeError):
F.vflip(1)
with self.assertRaises(TypeError):
F.adjust_brightness(1, 0.1)
with self.assertRaises(TypeError):
F.adjust_contrast(1, 0.1)
with self.assertRaises(TypeError):
F.adjust_hue(1, 0.1)
with self.assertRaises(TypeError):
F.adjust_saturation(1, 0.1)
with self.assertRaises(TypeError):
F.rotate(1, 0.1)
with self.assertRaises(TypeError):
F.to_grayscale(1)
with self.assertRaises(ValueError):
set_image_backend(1)
with self.assertRaises(ValueError):
image_load('tmp.jpg', backend=1)
def test_normalize(self):
np_img = (np.random.rand(28, 24, 3)).astype('uint8')
pil_img = Image.fromarray(np_img)
tensor_img = F.to_tensor(pil_img)
tensor_img_hwc = F.to_tensor(pil_img, data_format='HWC')
mean = [0.5, 0.5, 0.5]
std = [0.5, 0.5, 0.5]
normalized_img = F.normalize(tensor_img, mean, std)
normalized_img = F.normalize(
tensor_img_hwc, mean, std, data_format='HWC')
normalized_img = F.normalize(pil_img, mean, std, data_format='HWC')
normalized_img = F.normalize(
np_img, mean, std, data_format='HWC', to_rgb=True)
def test_center_crop(self):
np_img = (np.random.rand(28, 24, 3)).astype('uint8')
pil_img = Image.fromarray(np_img)
np_cropped_img = F.center_crop(np_img, 4)
pil_cropped_img = F.center_crop(pil_img, 4)
np.testing.assert_almost_equal(np_cropped_img,
np.array(pil_cropped_img))
def test_pad(self):
np_img = (np.random.rand(28, 24, 3)).astype('uint8')
pil_img = Image.fromarray(np_img)
np_padded_img = F.pad(np_img, [1, 2], padding_mode='reflect')
pil_padded_img = F.pad(pil_img, [1, 2], padding_mode='reflect')
np.testing.assert_almost_equal(np_padded_img, np.array(pil_padded_img))
pil_p_img = pil_img.convert('P')
pil_padded_img = F.pad(pil_p_img, [1, 2])
pil_padded_img = F.pad(pil_p_img, [1, 2], padding_mode='reflect')
def test_resize(self):
np_img = (np.zeros([28, 24, 3])).astype('uint8')
pil_img = Image.fromarray(np_img)
np_reseized_img = F.resize(np_img, 40)
pil_reseized_img = F.resize(pil_img, 40)
np.testing.assert_almost_equal(np_reseized_img,
np.array(pil_reseized_img))
gray_img = (np.zeros([28, 32])).astype('uint8')
gray_resize_img = F.resize(gray_img, 40)
def test_to_tensor(self):
np_img = (np.random.rand(28, 28) * 255).astype('uint8')
pil_img = Image.fromarray(np_img)
np_tensor = F.to_tensor(np_img, data_format='HWC')
pil_tensor = F.to_tensor(pil_img, data_format='HWC')
np.testing.assert_allclose(np_tensor.numpy(), pil_tensor.numpy())
# test float dtype
float_img = np.random.rand(28, 28)
float_tensor = F.to_tensor(float_img)
pil_img = Image.fromarray(np_img).convert('I')
pil_tensor = F.to_tensor(pil_img)
pil_img = Image.fromarray(np_img).convert('I;16')
pil_tensor = F.to_tensor(pil_img)
pil_img = Image.fromarray(np_img).convert('F')
pil_tensor = F.to_tensor(pil_img)
pil_img = Image.fromarray(np_img).convert('1')
pil_tensor = F.to_tensor(pil_img)
pil_img = Image.fromarray(np_img).convert('YCbCr')
pil_tensor = F.to_tensor(pil_img)
def test_image_load(self):
fake_img = Image.fromarray((np.random.random((32, 32, 3)) * 255).astype(
'uint8'))
path = 'temp.jpg'
fake_img.save(path)
set_image_backend('pil')
pil_img = image_load(path).convert('RGB')
print(type(pil_img))
set_image_backend('cv2')
np_img = image_load(path)
os.remove(path)
if __name__ == '__main__': if __name__ == '__main__':
......
...@@ -21,6 +21,10 @@ from .transforms import * ...@@ -21,6 +21,10 @@ from .transforms import *
from . import datasets from . import datasets
from .datasets import * from .datasets import *
from . import image
from .image import *
__all__ = models.__all__ \ __all__ = models.__all__ \
+ transforms.__all__ \ + transforms.__all__ \
+ datasets.__all__ + datasets.__all__ \
+ image.__all__
...@@ -14,6 +14,7 @@ ...@@ -14,6 +14,7 @@
import os import os
import sys import sys
from PIL import Image
import paddle import paddle
from paddle.io import Dataset from paddle.io import Dataset
...@@ -136,7 +137,7 @@ class DatasetFolder(Dataset): ...@@ -136,7 +137,7 @@ class DatasetFolder(Dataset):
"Found 0 files in subfolders of: " + self.root + "\n" "Found 0 files in subfolders of: " + self.root + "\n"
"Supported extensions are: " + ",".join(extensions))) "Supported extensions are: " + ",".join(extensions)))
self.loader = cv2_loader if loader is None else loader self.loader = default_loader if loader is None else loader
self.extensions = extensions self.extensions = extensions
self.classes = classes self.classes = classes
...@@ -193,9 +194,23 @@ IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', ...@@ -193,9 +194,23 @@ IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif',
'.tiff', '.webp') '.tiff', '.webp')
def pil_loader(path):
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
def cv2_loader(path): def cv2_loader(path):
cv2 = try_import('cv2') cv2 = try_import('cv2')
return cv2.imread(path) return cv2.cvtColor(cv2.imread(path), cv2.COLOR_BGR2RGB)
def default_loader(path):
from paddle.vision import get_image_backend
if get_image_backend() == 'cv2':
return cv2_loader(path)
else:
return pil_loader(path)
class ImageFolder(Dataset): class ImageFolder(Dataset):
...@@ -280,7 +295,7 @@ class ImageFolder(Dataset): ...@@ -280,7 +295,7 @@ class ImageFolder(Dataset):
"Found 0 files in subfolders of: " + self.root + "\n" "Found 0 files in subfolders of: " + self.root + "\n"
"Supported extensions are: " + ",".join(extensions))) "Supported extensions are: " + ",".join(extensions)))
self.loader = cv2_loader if loader is None else loader self.loader = default_loader if loader is None else loader
self.extensions = extensions self.extensions = extensions
self.samples = samples self.samples = samples
self.transform = transform self.transform = transform
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from PIL import Image
from paddle.utils import try_import
__all__ = ['set_image_backend', 'get_image_backend', 'image_load']
_image_backend = 'pil'
def set_image_backend(backend):
"""
Specifies the backend used to load images in class ``paddle.vision.datasets.ImageFolder``
and ``paddle.vision.datasets.DatasetFolder`` . Now support backends are pillow and opencv.
If backend not set, will use 'pil' as default.
Args:
backend (str): Name of the image load backend, should be one of {'pil', 'cv2'}.
Examples:
.. code-block:: python
import os
import shutil
import tempfile
import numpy as np
from PIL import Image
from paddle.vision import DatasetFolder
from paddle.vision import set_image_backend
set_image_backend('pil')
def make_fake_dir():
data_dir = tempfile.mkdtemp()
for i in range(2):
sub_dir = os.path.join(data_dir, 'class_' + str(i))
if not os.path.exists(sub_dir):
os.makedirs(sub_dir)
for j in range(2):
fake_img = Image.fromarray((np.random.random((32, 32, 3)) * 255).astype('uint8'))
fake_img.save(os.path.join(sub_dir, str(j) + '.png'))
return data_dir
temp_dir = make_fake_dir()
pil_data_folder = DatasetFolder(temp_dir)
for items in pil_data_folder:
break
# should get PIL.Image.Image
print(type(items[0]))
# use opencv as backend
# set_image_backend('cv2')
# cv2_data_folder = DatasetFolder(temp_dir)
# for items in cv2_data_folder:
# break
# should get numpy.ndarray
# print(type(items[0]))
shutil.rmtree(temp_dir)
"""
global _image_backend
if backend not in ['pil', 'cv2']:
raise ValueError(
"Expected backend are one of ['pil', 'cv2'], but got {}"
.format(backend))
_image_backend = backend
def get_image_backend():
"""
Gets the name of the package used to load images
Returns:
str: backend of image load.
Examples:
.. code-block:: python
from paddle.vision import get_image_backend
backend = get_image_backend()
print(backend)
"""
return _image_backend
def image_load(path, backend=None):
"""Load an image.
Args:
path (str): Path of the image.
backend (str, optional): The image decoding backend type. Options are
`cv2`, `pil`, `None`. If backend is None, the global _imread_backend
specified by ``paddle.vision.set_image_backend`` will be used. Default: None.
Returns:
PIL.Image or np.array: Loaded image.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision import image_load, set_image_backend
fake_img = Image.fromarray((np.random.random((32, 32, 3)) * 255).astype('uint8'))
path = 'temp.png'
fake_img.save(path)
set_image_backend('pil')
pil_img = image_load(path).convert('RGB')
# should be PIL.Image.Image
print(type(pil_img))
# use opencv as backend
# set_image_backend('cv2')
# np_img = image_load(path)
# # should get numpy.ndarray
# print(type(np_img))
"""
if backend is None:
backend = _image_backend
if backend not in ['pil', 'cv2']:
raise ValueError(
"Expected backend are one of ['pil', 'cv2'], but got {}"
.format(backend))
if backend == 'pil':
return Image.open(path)
else:
cv2 = try_import('cv2')
return cv2.imread(path)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
import sys
import numbers
import warnings
import collections
import numpy as np
from numpy import sin, cos, tan
import paddle
from paddle.utils import try_import
if sys.version_info < (3, 3):
Sequence = collections.Sequence
Iterable = collections.Iterable
else:
Sequence = collections.abc.Sequence
Iterable = collections.abc.Iterable
def to_tensor(pic, data_format='CHW'):
"""Converts a ``numpy.ndarray`` to paddle.Tensor.
See ``ToTensor`` for more details.
Args:
pic (np.ndarray): Image to be converted to tensor.
data_format (str, optional): Data format of img, should be 'HWC' or
'CHW'. Default: 'CHW'.
Returns:
Tensor: Converted image.
"""
if not data_format in ['CHW', 'HWC']:
raise ValueError('data_format should be CHW or HWC. Got {}'.format(
data_format))
if pic.ndim == 2:
pic = pic[:, :, None]
if data_format == 'CHW':
img = paddle.to_tensor(pic.transpose((2, 0, 1)))
else:
img = paddle.to_tensor(pic)
if paddle.fluid.data_feeder.convert_dtype(img.dtype) == 'uint8':
return paddle.cast(img, np.float32) / 255.
else:
return img
def resize(img, size, interpolation='bilinear'):
"""
Resizes the image to given size
Args:
input (np.ndarray): Image to be resized.
size (int|list|tuple): Target size of input data, with (height, width) shape.
interpolation (int|str, optional): Interpolation method. when use cv2 backend,
support method are as following:
- "nearest": cv2.INTER_NEAREST,
- "bilinear": cv2.INTER_LINEAR,
- "area": cv2.INTER_AREA,
- "bicubic": cv2.INTER_CUBIC,
- "lanczos": cv2.INTER_LANCZOS4
Returns:
np.array: Resized image.
"""
cv2 = try_import('cv2')
_cv2_interp_from_str = {
'nearest': cv2.INTER_NEAREST,
'bilinear': cv2.INTER_LINEAR,
'area': cv2.INTER_AREA,
'bicubic': cv2.INTER_CUBIC,
'lanczos': cv2.INTER_LANCZOS4
}
if not (isinstance(size, int) or
(isinstance(size, Iterable) and len(size) == 2)):
raise TypeError('Got inappropriate size arg: {}'.format(size))
h, w = img.shape[:2]
if isinstance(size, int):
if (w <= h and w == size) or (h <= w and h == size):
return img
if w < h:
ow = size
oh = int(size * h / w)
output = cv2.resize(
img,
dsize=(ow, oh),
interpolation=_cv2_interp_from_str[interpolation])
else:
oh = size
ow = int(size * w / h)
output = cv2.resize(
img,
dsize=(ow, oh),
interpolation=_cv2_interp_from_str[interpolation])
else:
output = cv2.resize(
img,
dsize=(size[1], size[0]),
interpolation=_cv2_interp_from_str[interpolation])
if len(img.shape) == 3 and img.shape[2] == 1:
return output[:, :, np.newaxis]
else:
return output
def pad(img, padding, fill=0, padding_mode='constant'):
"""
Pads the given numpy.array on all sides with specified padding mode and fill value.
Args:
img (np.array): Image to be padded.
padding (int|list|tuple): Padding on each border. If a single int is provided this
is used to pad all borders. If tuple of length 2 is provided this is the padding
on left/right and top/bottom respectively. If a tuple of length 4 is provided
this is the padding for the left, top, right and bottom borders
respectively.
fill (float, optional): Pixel fill value for constant fill. If a tuple of
length 3, it is used to fill R, G, B channels respectively.
This value is only used when the padding_mode is constant. Default: 0.
padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default: 'constant'.
- constant: pads with a constant value, this value is specified with fill
- edge: pads with the last value on the edge of the image
- reflect: pads with reflection of image (without repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
will result in [3, 2, 1, 2, 3, 4, 3, 2]
- symmetric: pads with reflection of image (repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
will result in [2, 1, 1, 2, 3, 4, 4, 3]
Returns:
np.array: Padded image.
"""
cv2 = try_import('cv2')
_cv2_pad_from_str = {
'constant': cv2.BORDER_CONSTANT,
'edge': cv2.BORDER_REPLICATE,
'reflect': cv2.BORDER_REFLECT_101,
'symmetric': cv2.BORDER_REFLECT
}
if not isinstance(padding, (numbers.Number, list, tuple)):
raise TypeError('Got inappropriate padding arg')
if not isinstance(fill, (numbers.Number, str, list, tuple)):
raise TypeError('Got inappropriate fill arg')
if not isinstance(padding_mode, str):
raise TypeError('Got inappropriate padding_mode arg')
if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
raise ValueError(
"Padding must be an int or a 2, or 4 element tuple, not a " +
"{} element tuple".format(len(padding)))
assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric'], \
'Padding mode should be either constant, edge, reflect or symmetric'
if isinstance(padding, list):
padding = tuple(padding)
if isinstance(padding, int):
pad_left = pad_right = pad_top = pad_bottom = padding
if isinstance(padding, Sequence) and len(padding) == 2:
pad_left = pad_right = padding[0]
pad_top = pad_bottom = padding[1]
if isinstance(padding, Sequence) and len(padding) == 4:
pad_left = padding[0]
pad_top = padding[1]
pad_right = padding[2]
pad_bottom = padding[3]
if len(img.shape) == 3 and img.shape[2] == 1:
return cv2.copyMakeBorder(
img,
top=pad_top,
bottom=pad_bottom,
left=pad_left,
right=pad_right,
borderType=_cv2_pad_from_str[padding_mode],
value=fill)[:, :, np.newaxis]
else:
return cv2.copyMakeBorder(
img,
top=pad_top,
bottom=pad_bottom,
left=pad_left,
right=pad_right,
borderType=_cv2_pad_from_str[padding_mode],
value=fill)
def crop(img, top, left, height, width):
"""Crops the given image.
Args:
img (np.array): Image to be cropped. (0,0) denotes the top left
corner of the image.
top (int): Vertical component of the top left corner of the crop box.
left (int): Horizontal component of the top left corner of the crop box.
height (int): Height of the crop box.
width (int): Width of the crop box.
Returns:
np.array: Cropped image.
"""
return img[top:top + height, left:left + width, :]
def center_crop(img, output_size):
"""Crops the given image and resize it to desired size.
Args:
img (np.array): Image to be cropped. (0,0) denotes the top left corner of the image.
output_size (sequence or int): (height, width) of the crop box. If int,
it is used for both directions
backend (str, optional): The image proccess backend type. Options are `pil`, `cv2`. Default: 'pil'.
Returns:
np.array: Cropped image.
"""
if isinstance(output_size, numbers.Number):
output_size = (int(output_size), int(output_size))
h, w = img.shape[0:2]
th, tw = output_size
i = int(round((h - th) / 2.))
j = int(round((w - tw) / 2.))
return crop(img, i, j, th, tw)
def hflip(img):
"""Horizontally flips the given image.
Args:
img (np.array): Image to be flipped.
Returns:
np.array: Horizontall flipped image.
"""
cv2 = try_import('cv2')
return cv2.flip(img, 1)
def vflip(img):
"""Vertically flips the given np.array.
Args:
img (np.array): Image to be flipped.
Returns:
np.array: Vertically flipped image.
"""
cv2 = try_import('cv2')
if len(img.shape) == 3 and img.shape[2] == 1:
return cv2.flip(img, 0)[:, :, np.newaxis]
else:
return cv2.flip(img, 0)
def adjust_brightness(img, brightness_factor):
"""Adjusts brightness of an image.
Args:
img (np.array): Image to be adjusted.
brightness_factor (float): How much to adjust the brightness. Can be
any non negative number. 0 gives a black image, 1 gives the
original image while 2 increases the brightness by a factor of 2.
Returns:
np.array: Brightness adjusted image.
"""
cv2 = try_import('cv2')
table = np.array([i * brightness_factor
for i in range(0, 256)]).clip(0, 255).astype('uint8')
if len(img.shape) == 3 and img.shape[2] == 1:
return cv2.LUT(img, table)[:, :, np.newaxis]
else:
return cv2.LUT(img, table)
def adjust_contrast(img, contrast_factor):
"""Adjusts contrast of an image.
Args:
img (np.array): Image to be adjusted.
contrast_factor (float): How much to adjust the contrast. Can be any
non negative number. 0 gives a solid gray image, 1 gives the
original image while 2 increases the contrast by a factor of 2.
Returns:
np.array: Contrast adjusted image.
"""
cv2 = try_import('cv2')
table = np.array([(i - 74) * contrast_factor + 74
for i in range(0, 256)]).clip(0, 255).astype('uint8')
if len(img.shape) == 3 and img.shape[2] == 1:
return cv2.LUT(img, table)[:, :, np.newaxis]
else:
return cv2.LUT(img, table)
def adjust_saturation(img, saturation_factor):
"""Adjusts color saturation of an image.
Args:
img (np.array): Image to be adjusted.
saturation_factor (float): How much to adjust the saturation. 0 will
give a black and white image, 1 will give the original image while
2 will enhance the saturation by a factor of 2.
Returns:
np.array: Saturation adjusted image.
"""
cv2 = try_import('cv2')
dtype = img.dtype
img = img.astype(np.float32)
alpha = np.random.uniform(
max(0, 1 - saturation_factor), 1 + saturation_factor)
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray_img = gray_img[..., np.newaxis]
img = img * alpha + gray_img * (1 - alpha)
return img.clip(0, 255).astype(dtype)
def adjust_hue(img, hue_factor):
"""Adjusts hue of an image.
The image hue is adjusted by converting the image to HSV and
cyclically shifting the intensities in the hue channel (H).
The image is then converted back to original image mode.
`hue_factor` is the amount of shift in H channel and must be in the
interval `[-0.5, 0.5]`.
Args:
img (np.array): Image to be adjusted.
hue_factor (float): How much to shift the hue channel. Should be in
[-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
HSV space in positive and negative direction respectively.
0 means no shift. Therefore, both -0.5 and 0.5 will give an image
with complementary colors while 0 gives the original image.
Returns:
np.array: Hue adjusted image.
"""
cv2 = try_import('cv2')
if not (-0.5 <= hue_factor <= 0.5):
raise ValueError('hue_factor is not in [-0.5, 0.5].'.format(hue_factor))
dtype = img.dtype
img = img.astype(np.uint8)
hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV_FULL)
h, s, v = cv2.split(hsv_img)
alpha = np.random.uniform(hue_factor, hue_factor)
h = h.astype(np.uint8)
# uint8 addition take cares of rotation across boundaries
with np.errstate(over="ignore"):
h += np.uint8(alpha * 255)
hsv_img = cv2.merge([h, s, v])
return cv2.cvtColor(hsv_img, cv2.COLOR_HSV2BGR_FULL).astype(dtype)
def rotate(img, angle, resample=False, expand=False, center=None, fill=0):
"""Rotates the image by angle.
Args:
img (np.array): Image to be rotated.
angle (float or int): In degrees degrees counter clockwise order.
resample (int|str, optional): An optional resampling filter. If omitted, or if the
image has only one channel, it is set to cv2.INTER_NEAREST.
when use cv2 backend, support method are as following:
- "nearest": cv2.INTER_NEAREST,
- "bilinear": cv2.INTER_LINEAR,
- "bicubic": cv2.INTER_CUBIC
expand (bool, optional): Optional expansion flag.
If true, expands the output image to make it large enough to hold the entire rotated image.
If false or omitted, make the output image the same size as the input image.
Note that the expand flag assumes rotation around the center and no translation.
center (2-tuple, optional): Optional center of rotation.
Origin is the upper left corner.
Default is the center of the image.
fill (3-tuple or int): RGB pixel fill value for area outside the rotated image.
If int, it is used for all channels respectively.
Returns:
np.array: Rotated image.
"""
cv2 = try_import('cv2')
rows, cols = img.shape[0:2]
if center is None:
center = (cols / 2, rows / 2)
M = cv2.getRotationMatrix2D(center, angle, 1)
if len(img.shape) == 3 and img.shape[2] == 1:
return cv2.warpAffine(img, M, (cols, rows))[:, :, np.newaxis]
else:
return cv2.warpAffine(img, M, (cols, rows))
def to_grayscale(img, num_output_channels=1):
"""Converts image to grayscale version of image.
Args:
img (np.array): Image to be converted to grayscale.
Returns:
np.array: Grayscale version of the image.
if num_output_channels = 1 : returned image is single channel
if num_output_channels = 3 : returned image is 3 channel with r = g = b
"""
cv2 = try_import('cv2')
if num_output_channels == 1:
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)[:, :, np.newaxis]
elif num_output_channels == 3:
# much faster than doing cvtColor to go back to gray
img = np.broadcast_to(
cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)[:, :, np.newaxis], img.shape)
else:
raise ValueError('num_output_channels should be either 1 or 3')
return img
def normalize(img, mean, std, data_format='CHW', to_rgb=False):
"""Normalizes a ndarray imge or image with mean and standard deviation.
Args:
img (np.array): input data to be normalized.
mean (list|tuple): Sequence of means for each channel.
std (list|tuple): Sequence of standard deviations for each channel.
data_format (str, optional): Data format of img, should be 'HWC' or
'CHW'. Default: 'CHW'.
to_rgb (bool, optional): Whether to convert to rgb. Default: False.
Returns:
np.array: Normalized mage.
"""
if data_format == 'CHW':
mean = np.float32(np.array(mean).reshape(-1, 1, 1))
std = np.float32(np.array(std).reshape(-1, 1, 1))
else:
mean = np.float32(np.array(mean).reshape(1, 1, -1))
std = np.float32(np.array(std).reshape(1, 1, -1))
if to_rgb:
cv2 = try_import('cv2')
# inplace
cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)
img = (img - mean) / std
return img
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
import sys
import math
import numbers
import warnings
import collections
from PIL import Image, ImageOps, ImageEnhance
import numpy as np
from numpy import sin, cos, tan
import paddle
if sys.version_info < (3, 3):
Sequence = collections.Sequence
Iterable = collections.Iterable
else:
Sequence = collections.abc.Sequence
Iterable = collections.abc.Iterable
_pil_interp_from_str = {
'nearest': Image.NEAREST,
'bilinear': Image.BILINEAR,
'bicubic': Image.BICUBIC,
'box': Image.BOX,
'lanczos': Image.LANCZOS,
'hamming': Image.HAMMING
}
def to_tensor(pic, data_format='CHW'):
"""Converts a ``PIL.Image`` to paddle.Tensor.
See ``ToTensor`` for more details.
Args:
pic (PIL.Image): Image to be converted to tensor.
data_format (str, optional): Data format of img, should be 'HWC' or
'CHW'. Default: 'CHW'.
Returns:
Tensor: Converted image.
"""
if not data_format in ['CHW', 'HWC']:
raise ValueError('data_format should be CHW or HWC. Got {}'.format(
data_format))
# PIL Image
if pic.mode == 'I':
img = paddle.to_tensor(np.array(pic, np.int32, copy=False))
elif pic.mode == 'I;16':
# cast and reshape not support int16
img = paddle.to_tensor(np.array(pic, np.int32, copy=False))
elif pic.mode == 'F':
img = paddle.to_tensor(np.array(pic, np.float32, copy=False))
elif pic.mode == '1':
img = 255 * paddle.to_tensor(np.array(pic, np.uint8, copy=False))
else:
img = paddle.to_tensor(np.array(pic, copy=False))
if pic.mode == 'YCbCr':
nchannel = 3
elif pic.mode == 'I;16':
nchannel = 1
else:
nchannel = len(pic.mode)
dtype = paddle.fluid.data_feeder.convert_dtype(img.dtype)
if dtype == 'uint8':
img = paddle.cast(img, np.float32) / 255.
img = img.reshape([pic.size[1], pic.size[0], nchannel])
if data_format == 'CHW':
img = img.transpose([2, 0, 1])
return img
def resize(img, size, interpolation='bilinear'):
"""
Resizes the image to given size
Args:
input (PIL.Image): Image to be resized.
size (int|list|tuple): Target size of input data, with (height, width) shape.
interpolation (int|str, optional): Interpolation method. when use pil backend,
support method are as following:
- "nearest": Image.NEAREST,
- "bilinear": Image.BILINEAR,
- "bicubic": Image.BICUBIC,
- "box": Image.BOX,
- "lanczos": Image.LANCZOS,
- "hamming": Image.HAMMING
Returns:
PIL.Image: Resized image.
"""
if not (isinstance(size, int) or
(isinstance(size, Iterable) and len(size) == 2)):
raise TypeError('Got inappropriate size arg: {}'.format(size))
if isinstance(size, int):
w, h = img.size
if (w <= h and w == size) or (h <= w and h == size):
return img
if w < h:
ow = size
oh = int(size * h / w)
return img.resize((ow, oh), _pil_interp_from_str[interpolation])
else:
oh = size
ow = int(size * w / h)
return img.resize((ow, oh), _pil_interp_from_str[interpolation])
else:
return img.resize(size[::-1], _pil_interp_from_str[interpolation])
def pad(img, padding, fill=0, padding_mode='constant'):
"""
Pads the given PIL.Image on all sides with specified padding mode and fill value.
Args:
img (PIL.Image): Image to be padded.
padding (int|list|tuple): Padding on each border. If a single int is provided this
is used to pad all borders. If tuple of length 2 is provided this is the padding
on left/right and top/bottom respectively. If a tuple of length 4 is provided
this is the padding for the left, top, right and bottom borders
respectively.
fill (float, optional): Pixel fill value for constant fill. If a tuple of
length 3, it is used to fill R, G, B channels respectively.
This value is only used when the padding_mode is constant. Default: 0.
padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default: 'constant'.
- constant: pads with a constant value, this value is specified with fill
- edge: pads with the last value on the edge of the image
- reflect: pads with reflection of image (without repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
will result in [3, 2, 1, 2, 3, 4, 3, 2]
- symmetric: pads with reflection of image (repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
will result in [2, 1, 1, 2, 3, 4, 4, 3]
Returns:
PIL.Image: Padded image.
"""
if not isinstance(padding, (numbers.Number, list, tuple)):
raise TypeError('Got inappropriate padding arg')
if not isinstance(fill, (numbers.Number, str, list, tuple)):
raise TypeError('Got inappropriate fill arg')
if not isinstance(padding_mode, str):
raise TypeError('Got inappropriate padding_mode arg')
if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
raise ValueError(
"Padding must be an int or a 2, or 4 element tuple, not a " +
"{} element tuple".format(len(padding)))
assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric'], \
'Padding mode should be either constant, edge, reflect or symmetric'
if isinstance(padding, list):
padding = tuple(padding)
if isinstance(padding, int):
pad_left = pad_right = pad_top = pad_bottom = padding
if isinstance(padding, Sequence) and len(padding) == 2:
pad_left = pad_right = padding[0]
pad_top = pad_bottom = padding[1]
if isinstance(padding, Sequence) and len(padding) == 4:
pad_left = padding[0]
pad_top = padding[1]
pad_right = padding[2]
pad_bottom = padding[3]
if padding_mode == 'constant':
if img.mode == 'P':
palette = img.getpalette()
image = ImageOps.expand(img, border=padding, fill=fill)
image.putpalette(palette)
return image
return ImageOps.expand(img, border=padding, fill=fill)
else:
if img.mode == 'P':
palette = img.getpalette()
img = np.asarray(img)
img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right)),
padding_mode)
img = Image.fromarray(img)
img.putpalette(palette)
return img
img = np.asarray(img)
# RGB image
if len(img.shape) == 3:
img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right),
(0, 0)), padding_mode)
# Grayscale image
if len(img.shape) == 2:
img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right)),
padding_mode)
return Image.fromarray(img)
def crop(img, top, left, height, width):
"""Crops the given PIL Image.
Args:
img (PIL.Image): Image to be cropped. (0,0) denotes the top left
corner of the image.
top (int): Vertical component of the top left corner of the crop box.
left (int): Horizontal component of the top left corner of the crop box.
height (int): Height of the crop box.
width (int): Width of the crop box.
Returns:
PIL.Image: Cropped image.
"""
return img.crop((left, top, left + width, top + height))
def center_crop(img, output_size):
"""Crops the given PIL Image and resize it to desired size.
Args:
img (PIL.Image): Image to be cropped. (0,0) denotes the top left corner of the image.
output_size (sequence or int): (height, width) of the crop box. If int,
it is used for both directions
backend (str, optional): The image proccess backend type. Options are `pil`, `cv2`. Default: 'pil'.
Returns:
PIL.Image: Cropped image.
"""
if isinstance(output_size, numbers.Number):
output_size = (int(output_size), int(output_size))
image_width, image_height = img.size
crop_height, crop_width = output_size
crop_top = int(round((image_height - crop_height) / 2.))
crop_left = int(round((image_width - crop_width) / 2.))
return crop(img, crop_top, crop_left, crop_height, crop_width)
def hflip(img):
"""Horizontally flips the given PIL Image.
Args:
img (PIL.Image): Image to be flipped.
Returns:
PIL.Image: Horizontall flipped image.
"""
return img.transpose(Image.FLIP_LEFT_RIGHT)
def vflip(img):
"""Vertically flips the given PIL Image.
Args:
img (PIL.Image): Image to be flipped.
Returns:
PIL.Image: Vertically flipped image.
"""
return img.transpose(Image.FLIP_TOP_BOTTOM)
def adjust_brightness(img, brightness_factor):
"""Adjusts brightness of an Image.
Args:
img (PIL.Image): PIL Image to be adjusted.
brightness_factor (float): How much to adjust the brightness. Can be
any non negative number. 0 gives a black image, 1 gives the
original image while 2 increases the brightness by a factor of 2.
Returns:
PIL.Image: Brightness adjusted image.
"""
enhancer = ImageEnhance.Brightness(img)
img = enhancer.enhance(brightness_factor)
return img
def adjust_contrast(img, contrast_factor):
"""Adjusts contrast of an Image.
Args:
img (PIL.Image): PIL Image to be adjusted.
contrast_factor (float): How much to adjust the contrast. Can be any
non negative number. 0 gives a solid gray image, 1 gives the
original image while 2 increases the contrast by a factor of 2.
Returns:
PIL.Image: Contrast adjusted image.
"""
enhancer = ImageEnhance.Contrast(img)
img = enhancer.enhance(contrast_factor)
return img
def adjust_saturation(img, saturation_factor):
"""Adjusts color saturation of an image.
Args:
img (PIL.Image): PIL Image to be adjusted.
saturation_factor (float): How much to adjust the saturation. 0 will
give a black and white image, 1 will give the original image while
2 will enhance the saturation by a factor of 2.
Returns:
PIL.Image: Saturation adjusted image.
"""
enhancer = ImageEnhance.Color(img)
img = enhancer.enhance(saturation_factor)
return img
def adjust_hue(img, hue_factor):
"""Adjusts hue of an image.
The image hue is adjusted by converting the image to HSV and
cyclically shifting the intensities in the hue channel (H).
The image is then converted back to original image mode.
`hue_factor` is the amount of shift in H channel and must be in the
interval `[-0.5, 0.5]`.
Args:
img (PIL.Image): PIL Image to be adjusted.
hue_factor (float): How much to shift the hue channel. Should be in
[-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
HSV space in positive and negative direction respectively.
0 means no shift. Therefore, both -0.5 and 0.5 will give an image
with complementary colors while 0 gives the original image.
Returns:
PIL.Image: Hue adjusted image.
"""
if not (-0.5 <= hue_factor <= 0.5):
raise ValueError('hue_factor is not in [-0.5, 0.5].'.format(hue_factor))
input_mode = img.mode
if input_mode in {'L', '1', 'I', 'F'}:
return img
h, s, v = img.convert('HSV').split()
np_h = np.array(h, dtype=np.uint8)
# uint8 addition take cares of rotation across boundaries
with np.errstate(over='ignore'):
np_h += np.uint8(hue_factor * 255)
h = Image.fromarray(np_h, 'L')
img = Image.merge('HSV', (h, s, v)).convert(input_mode)
return img
def rotate(img, angle, resample=False, expand=False, center=None, fill=0):
"""Rotates the image by angle.
Args:
img (PIL.Image): Image to be rotated.
angle (float or int): In degrees degrees counter clockwise order.
resample (int|str, optional): An optional resampling filter. If omitted, or if the
image has only one channel, it is set to PIL.Image.NEAREST . when use pil backend,
support method are as following:
- "nearest": Image.NEAREST,
- "bilinear": Image.BILINEAR,
- "bicubic": Image.BICUBIC
expand (bool, optional): Optional expansion flag.
If true, expands the output image to make it large enough to hold the entire rotated image.
If false or omitted, make the output image the same size as the input image.
Note that the expand flag assumes rotation around the center and no translation.
center (2-tuple, optional): Optional center of rotation.
Origin is the upper left corner.
Default is the center of the image.
fill (3-tuple or int): RGB pixel fill value for area outside the rotated image.
If int, it is used for all channels respectively.
Returns:
PIL.Image: Rotated image.
"""
if isinstance(fill, int):
fill = tuple([fill] * 3)
return img.rotate(angle, resample, expand, center, fillcolor=fill)
def to_grayscale(img, num_output_channels=1):
"""Converts image to grayscale version of image.
Args:
img (PIL.Image): Image to be converted to grayscale.
backend (str, optional): The image proccess backend type. Options are `pil`,
`cv2`. Default: 'pil'.
Returns:
PIL.Image: Grayscale version of the image.
if num_output_channels = 1 : returned image is single channel
if num_output_channels = 3 : returned image is 3 channel with r = g = b
"""
if num_output_channels == 1:
img = img.convert('L')
elif num_output_channels == 3:
img = img.convert('L')
np_img = np.array(img, dtype=np.uint8)
np_img = np.dstack([np_img, np_img, np_img])
img = Image.fromarray(np_img, 'RGB')
else:
raise ValueError('num_output_channels should be either 1 or 3')
return img
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
import paddle
def normalize(img, mean, std, data_format='CHW'):
"""Normalizes a tensor image with mean and standard deviation.
Args:
img (paddle.Tensor): input data to be normalized.
mean (list|tuple): Sequence of means for each channel.
std (list|tuple): Sequence of standard deviations for each channel.
data_format (str, optional): Data format of img, should be 'HWC' or
'CHW'. Default: 'CHW'.
Returns:
Tensor: Normalized mage.
"""
if data_format == 'CHW':
mean = paddle.to_tensor(mean).reshape([-1, 1, 1])
std = paddle.to_tensor(std).reshape([-1, 1, 1])
else:
mean = paddle.to_tensor(mean)
std = paddle.to_tensor(std)
return (img - mean) / std
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册