Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
172e76a8
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
172e76a8
编写于
10月 20, 2020
作者:
L
LielinJiang
提交者:
GitHub
10月 20, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
transform add pil backend (#28132)
上级
f63f8d73
变更
10
展开全部
隐藏空白更改
内联
并排
Showing
10 changed file
with
2556 addition
and
829 deletion
+2556
-829
python/paddle/tests/test_callbacks.py
python/paddle/tests/test_callbacks.py
+1
-1
python/paddle/tests/test_transforms.py
python/paddle/tests/test_transforms.py
+251
-46
python/paddle/vision/__init__.py
python/paddle/vision/__init__.py
+5
-1
python/paddle/vision/datasets/folder.py
python/paddle/vision/datasets/folder.py
+18
-3
python/paddle/vision/image.py
python/paddle/vision/image.py
+162
-0
python/paddle/vision/transforms/functional.py
python/paddle/vision/transforms/functional.py
+529
-218
python/paddle/vision/transforms/functional_cv2.py
python/paddle/vision/transforms/functional_cv2.py
+503
-0
python/paddle/vision/transforms/functional_pil.py
python/paddle/vision/transforms/functional_pil.py
+458
-0
python/paddle/vision/transforms/functional_tensor.py
python/paddle/vision/transforms/functional_tensor.py
+40
-0
python/paddle/vision/transforms/transforms.py
python/paddle/vision/transforms/transforms.py
+589
-560
未找到文件。
python/paddle/tests/test_callbacks.py
浏览文件 @
172e76a8
...
...
@@ -105,7 +105,7 @@ class TestCallbacks(unittest.TestCase):
self
.
run_callback
()
def
test_visualdl_callback
(
self
):
# visualdl not support python
3
# visualdl not support python
2
if
sys
.
version_info
<
(
3
,
):
return
...
...
python/paddle/tests/test_transforms.py
浏览文件 @
172e76a8
...
...
@@ -18,14 +18,19 @@ import tempfile
import
cv2
import
shutil
import
numpy
as
np
from
PIL
import
Image
import
paddle
from
paddle.vision
import
get_image_backend
,
set_image_backend
,
image_load
from
paddle.vision.datasets
import
DatasetFolder
from
paddle.vision.transforms
import
transforms
import
paddle.vision.transforms.functional
as
F
class
TestTransforms
(
unittest
.
TestCase
):
class
TestTransforms
CV2
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
backend
=
self
.
get_backend
()
set_image_backend
(
self
.
backend
)
self
.
data_dir
=
tempfile
.
mkdtemp
()
for
i
in
range
(
2
):
sub_dir
=
os
.
path
.
join
(
self
.
data_dir
,
'class_'
+
str
(
i
))
...
...
@@ -40,6 +45,22 @@ class TestTransforms(unittest.TestCase):
(
400
,
300
,
3
))
*
255
).
astype
(
'uint8'
)
cv2
.
imwrite
(
os
.
path
.
join
(
sub_dir
,
str
(
j
)
+
'.jpg'
),
fake_img
)
def
get_backend
(
self
):
return
'cv2'
def
create_image
(
self
,
shape
):
if
self
.
backend
==
'cv2'
:
return
(
np
.
random
.
rand
(
*
shape
)
*
255
).
astype
(
'uint8'
)
elif
self
.
backend
==
'pil'
:
return
Image
.
fromarray
((
np
.
random
.
rand
(
*
shape
)
*
255
).
astype
(
'uint8'
))
def
get_shape
(
self
,
img
):
if
self
.
backend
==
'pil'
:
return
np
.
array
(
img
).
shape
return
img
.
shape
def
tearDown
(
self
):
shutil
.
rmtree
(
self
.
data_dir
)
...
...
@@ -51,27 +72,29 @@ class TestTransforms(unittest.TestCase):
def
test_trans_all
(
self
):
normalize
=
transforms
.
Normalize
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.120
,
57.375
])
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.120
,
57.375
],
)
trans
=
transforms
.
Compose
([
transforms
.
RandomResizedCrop
(
224
),
transforms
.
GaussianNoise
(),
transforms
.
RandomResizedCrop
(
224
),
transforms
.
ColorJitter
(
brightness
=
0.4
,
contrast
=
0.4
,
saturation
=
0.4
,
hue
=
0.4
),
transforms
.
RandomHorizontalFlip
(),
transforms
.
Permute
(
mode
=
'CHW'
),
normalize
brightness
=
0.4
,
contrast
=
0.4
,
saturation
=
0.4
,
hue
=
0.4
),
transforms
.
RandomHorizontalFlip
(),
transforms
.
Transpose
(),
normalize
,
])
self
.
do_transform
(
trans
)
def
test_normalize
(
self
):
normalize
=
transforms
.
Normalize
(
mean
=
0.5
,
std
=
0.5
)
trans
=
transforms
.
Compose
([
transforms
.
Permute
(
mode
=
'CHW'
),
normalize
])
trans
=
transforms
.
Compose
([
transforms
.
Transpose
(
),
normalize
])
self
.
do_transform
(
trans
)
def
test_trans_resize
(
self
):
trans
=
transforms
.
Compose
([
transforms
.
Resize
(
300
,
[
0
,
1
]
),
transforms
.
Resize
(
300
),
transforms
.
RandomResizedCrop
((
280
,
280
)),
transforms
.
Resize
(
280
,
[
0
,
1
]
),
transforms
.
Resize
(
280
),
transforms
.
Resize
((
256
,
200
)),
transforms
.
Resize
((
180
,
160
)),
transforms
.
CenterCrop
(
128
),
...
...
@@ -79,13 +102,6 @@ class TestTransforms(unittest.TestCase):
])
self
.
do_transform
(
trans
)
def
test_trans_centerCrop
(
self
):
trans
=
transforms
.
Compose
([
transforms
.
CenterCropResize
(
224
),
transforms
.
CenterCropResize
(
128
,
160
),
])
self
.
do_transform
(
trans
)
def
test_flip
(
self
):
trans
=
transforms
.
Compose
([
transforms
.
RandomHorizontalFlip
(
1.0
),
...
...
@@ -96,7 +112,7 @@ class TestTransforms(unittest.TestCase):
self
.
do_transform
(
trans
)
def
test_color_jitter
(
self
):
trans
=
transforms
.
Batch
Compose
([
trans
=
transforms
.
Compose
([
transforms
.
BrightnessTransform
(
0.0
),
transforms
.
HueTransform
(
0.0
),
transforms
.
SaturationTransform
(
0.0
),
...
...
@@ -106,11 +122,11 @@ class TestTransforms(unittest.TestCase):
def
test_rotate
(
self
):
trans
=
transforms
.
Compose
([
transforms
.
RandomRotat
e
(
90
),
transforms
.
RandomRotat
e
([
-
10
,
10
]),
transforms
.
RandomRotat
e
(
transforms
.
RandomRotat
ion
(
90
),
transforms
.
RandomRotat
ion
([
-
10
,
10
]),
transforms
.
RandomRotat
ion
(
45
,
expand
=
True
),
transforms
.
RandomRotat
e
(
transforms
.
RandomRotat
ion
(
10
,
expand
=
True
,
center
=
(
60
,
80
)),
])
self
.
do_transform
(
trans
)
...
...
@@ -119,20 +135,15 @@ class TestTransforms(unittest.TestCase):
trans
=
transforms
.
Compose
([
transforms
.
Pad
(
2
)])
self
.
do_transform
(
trans
)
fake_img
=
np
.
random
.
rand
(
200
,
150
,
3
).
astype
(
'float32'
)
fake_img
=
self
.
create_image
((
200
,
150
,
3
)
)
trans_pad
=
transforms
.
Pad
(
10
)
fake_img_padded
=
trans_pad
(
fake_img
)
np
.
testing
.
assert_equal
(
fake_img_padded
.
shape
,
(
220
,
170
,
3
))
np
.
testing
.
assert_equal
(
self
.
get_shape
(
fake_img_padded
)
,
(
220
,
170
,
3
))
trans_pad1
=
transforms
.
Pad
([
1
,
2
])
trans_pad2
=
transforms
.
Pad
([
1
,
2
,
3
,
4
])
img
=
trans_pad1
(
fake_img
)
img
=
trans_pad2
(
img
)
def
test_erase
(
self
):
trans
=
transforms
.
Compose
(
[
transforms
.
RandomErasing
(),
transforms
.
RandomErasing
(
value
=
0.0
)])
self
.
do_transform
(
trans
)
def
test_random_crop
(
self
):
trans
=
transforms
.
Compose
([
transforms
.
RandomCrop
(
200
),
...
...
@@ -143,18 +154,19 @@ class TestTransforms(unittest.TestCase):
trans_random_crop1
=
transforms
.
RandomCrop
(
224
)
trans_random_crop2
=
transforms
.
RandomCrop
((
140
,
160
))
fake_img
=
np
.
random
.
rand
(
500
,
400
,
3
).
astype
(
'float32'
)
fake_img
=
self
.
create_image
((
500
,
400
,
3
)
)
fake_img_crop1
=
trans_random_crop1
(
fake_img
)
fake_img_crop2
=
trans_random_crop2
(
fake_img_crop1
)
np
.
testing
.
assert_equal
(
fake_img_crop1
.
shape
,
(
224
,
224
,
3
))
np
.
testing
.
assert_equal
(
self
.
get_shape
(
fake_img_crop1
)
,
(
224
,
224
,
3
))
np
.
testing
.
assert_equal
(
fake_img_crop2
.
shape
,
(
140
,
160
,
3
))
np
.
testing
.
assert_equal
(
self
.
get_shape
(
fake_img_crop2
)
,
(
140
,
160
,
3
))
trans_random_crop_same
=
transforms
.
RandomCrop
((
140
,
160
))
img
=
trans_random_crop_same
(
fake_img_crop2
)
trans_random_crop_bigger
=
transforms
.
RandomCrop
((
180
,
200
))
trans_random_crop_bigger
=
transforms
.
RandomCrop
(
(
180
,
200
),
pad_if_needed
=
True
)
img
=
trans_random_crop_bigger
(
img
)
trans_random_crop_pad
=
transforms
.
RandomCrop
((
224
,
256
),
2
,
True
)
...
...
@@ -165,21 +177,38 @@ class TestTransforms(unittest.TestCase):
self
.
do_transform
(
trans
)
trans_gray
=
transforms
.
Grayscale
()
fake_img
=
np
.
random
.
rand
(
500
,
400
,
3
).
astype
(
'float32'
)
fake_img
=
self
.
create_image
((
500
,
400
,
3
)
)
fake_img_gray
=
trans_gray
(
fake_img
)
np
.
testing
.
assert_equal
(
len
(
fake_img_gray
.
shape
),
3
)
np
.
testing
.
assert_equal
(
fake_img_gray
.
shape
[
0
],
500
)
np
.
testing
.
assert_equal
(
fake_img_gray
.
shape
[
1
],
400
)
np
.
testing
.
assert_equal
(
self
.
get_shape
(
fake_img_gray
)[
0
],
500
)
np
.
testing
.
assert_equal
(
self
.
get_shape
(
fake_img_gray
)[
1
],
400
)
trans_gray3
=
transforms
.
Grayscale
(
3
)
fake_img
=
np
.
random
.
rand
(
500
,
400
,
3
).
astype
(
'float32'
)
fake_img
=
self
.
create_image
((
500
,
400
,
3
)
)
fake_img_gray
=
trans_gray3
(
fake_img
)
def
test_tranpose
(
self
):
trans
=
transforms
.
Compose
([
transforms
.
Transpose
()])
self
.
do_transform
(
trans
)
fake_img
=
self
.
create_image
((
50
,
100
,
3
))
converted_img
=
trans
(
fake_img
)
np
.
testing
.
assert_equal
(
self
.
get_shape
(
converted_img
),
(
3
,
50
,
100
))
def
test_to_tensor
(
self
):
trans
=
transforms
.
Compose
([
transforms
.
ToTensor
()])
fake_img
=
self
.
create_image
((
50
,
100
,
3
))
tensor
=
trans
(
fake_img
)
assert
isinstance
(
tensor
,
paddle
.
Tensor
)
np
.
testing
.
assert_equal
(
tensor
.
shape
,
(
3
,
50
,
100
))
def
test_exception
(
self
):
trans
=
transforms
.
Compose
([
transforms
.
Resize
(
-
1
)])
trans_batch
=
transforms
.
Batch
Compose
([
transforms
.
Resize
(
-
1
)])
trans_batch
=
transforms
.
Compose
([
transforms
.
Resize
(
-
1
)])
with
self
.
assertRaises
(
Exception
):
self
.
do_transform
(
trans
)
...
...
@@ -203,35 +232,211 @@ class TestTransforms(unittest.TestCase):
transforms
.
Pad
([
1.0
,
2.0
,
3.0
])
with
self
.
assertRaises
(
TypeError
):
fake_img
=
np
.
random
.
rand
(
100
,
120
,
3
).
astype
(
'float32'
)
fake_img
=
self
.
create_image
((
100
,
120
,
3
)
)
F
.
pad
(
fake_img
,
'1'
)
with
self
.
assertRaises
(
TypeError
):
fake_img
=
np
.
random
.
rand
(
100
,
120
,
3
).
astype
(
'float32'
)
fake_img
=
self
.
create_image
((
100
,
120
,
3
)
)
F
.
pad
(
fake_img
,
1
,
{})
with
self
.
assertRaises
(
TypeError
):
fake_img
=
np
.
random
.
rand
(
100
,
120
,
3
).
astype
(
'float32'
)
fake_img
=
self
.
create_image
((
100
,
120
,
3
)
)
F
.
pad
(
fake_img
,
1
,
padding_mode
=-
1
)
with
self
.
assertRaises
(
ValueError
):
fake_img
=
np
.
random
.
rand
(
100
,
120
,
3
).
astype
(
'float32'
)
fake_img
=
self
.
create_image
((
100
,
120
,
3
)
)
F
.
pad
(
fake_img
,
[
1.0
,
2.0
,
3.0
])
with
self
.
assertRaises
(
ValueError
):
transforms
.
RandomRotat
e
(
-
2
)
transforms
.
RandomRotat
ion
(
-
2
)
with
self
.
assertRaises
(
ValueError
):
transforms
.
RandomRotat
e
([
1
,
2
,
3
])
transforms
.
RandomRotat
ion
([
1
,
2
,
3
])
with
self
.
assertRaises
(
ValueError
):
trans_gray
=
transforms
.
Grayscale
(
5
)
fake_img
=
np
.
random
.
rand
(
100
,
120
,
3
).
astype
(
'float32'
)
fake_img
=
self
.
create_image
((
100
,
120
,
3
)
)
trans_gray
(
fake_img
)
with
self
.
assertRaises
(
TypeError
):
transform
=
transforms
.
RandomResizedCrop
(
64
)
transform
(
1
)
with
self
.
assertRaises
(
ValueError
):
transform
=
transforms
.
BrightnessTransform
([
-
0.1
,
-
0.2
])
with
self
.
assertRaises
(
TypeError
):
transform
=
transforms
.
BrightnessTransform
(
'0.1'
)
with
self
.
assertRaises
(
ValueError
):
transform
=
transforms
.
BrightnessTransform
(
'0.1'
,
keys
=
1
)
with
self
.
assertRaises
(
NotImplementedError
):
transform
=
transforms
.
BrightnessTransform
(
'0.1'
,
keys
=
'a'
)
def
test_info
(
self
):
str
(
transforms
.
Compose
([
transforms
.
Resize
((
224
,
224
))]))
str
(
transforms
.
BatchCompose
([
transforms
.
Resize
((
224
,
224
))]))
str
(
transforms
.
Compose
([
transforms
.
Resize
((
224
,
224
))]))
class
TestTransformsPIL
(
TestTransformsCV2
):
def
get_backend
(
self
):
return
'pil'
class
TestFunctional
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
self
.
assertRaises
(
TypeError
):
F
.
to_tensor
(
1
)
with
self
.
assertRaises
(
ValueError
):
fake_img
=
Image
.
fromarray
((
np
.
random
.
rand
(
28
,
28
,
3
)
*
255
).
astype
(
'uint8'
))
F
.
to_tensor
(
fake_img
,
data_format
=
1
)
with
self
.
assertRaises
(
TypeError
):
fake_img
=
Image
.
fromarray
((
np
.
random
.
rand
(
28
,
28
,
3
)
*
255
).
astype
(
'uint8'
))
F
.
resize
(
fake_img
,
'1'
)
with
self
.
assertRaises
(
TypeError
):
F
.
resize
(
1
,
1
)
with
self
.
assertRaises
(
TypeError
):
F
.
pad
(
1
,
1
)
with
self
.
assertRaises
(
TypeError
):
F
.
crop
(
1
,
1
,
1
,
1
,
1
)
with
self
.
assertRaises
(
TypeError
):
F
.
hflip
(
1
)
with
self
.
assertRaises
(
TypeError
):
F
.
vflip
(
1
)
with
self
.
assertRaises
(
TypeError
):
F
.
adjust_brightness
(
1
,
0.1
)
with
self
.
assertRaises
(
TypeError
):
F
.
adjust_contrast
(
1
,
0.1
)
with
self
.
assertRaises
(
TypeError
):
F
.
adjust_hue
(
1
,
0.1
)
with
self
.
assertRaises
(
TypeError
):
F
.
adjust_saturation
(
1
,
0.1
)
with
self
.
assertRaises
(
TypeError
):
F
.
rotate
(
1
,
0.1
)
with
self
.
assertRaises
(
TypeError
):
F
.
to_grayscale
(
1
)
with
self
.
assertRaises
(
ValueError
):
set_image_backend
(
1
)
with
self
.
assertRaises
(
ValueError
):
image_load
(
'tmp.jpg'
,
backend
=
1
)
def
test_normalize
(
self
):
np_img
=
(
np
.
random
.
rand
(
28
,
24
,
3
)).
astype
(
'uint8'
)
pil_img
=
Image
.
fromarray
(
np_img
)
tensor_img
=
F
.
to_tensor
(
pil_img
)
tensor_img_hwc
=
F
.
to_tensor
(
pil_img
,
data_format
=
'HWC'
)
mean
=
[
0.5
,
0.5
,
0.5
]
std
=
[
0.5
,
0.5
,
0.5
]
normalized_img
=
F
.
normalize
(
tensor_img
,
mean
,
std
)
normalized_img
=
F
.
normalize
(
tensor_img_hwc
,
mean
,
std
,
data_format
=
'HWC'
)
normalized_img
=
F
.
normalize
(
pil_img
,
mean
,
std
,
data_format
=
'HWC'
)
normalized_img
=
F
.
normalize
(
np_img
,
mean
,
std
,
data_format
=
'HWC'
,
to_rgb
=
True
)
def
test_center_crop
(
self
):
np_img
=
(
np
.
random
.
rand
(
28
,
24
,
3
)).
astype
(
'uint8'
)
pil_img
=
Image
.
fromarray
(
np_img
)
np_cropped_img
=
F
.
center_crop
(
np_img
,
4
)
pil_cropped_img
=
F
.
center_crop
(
pil_img
,
4
)
np
.
testing
.
assert_almost_equal
(
np_cropped_img
,
np
.
array
(
pil_cropped_img
))
def
test_pad
(
self
):
np_img
=
(
np
.
random
.
rand
(
28
,
24
,
3
)).
astype
(
'uint8'
)
pil_img
=
Image
.
fromarray
(
np_img
)
np_padded_img
=
F
.
pad
(
np_img
,
[
1
,
2
],
padding_mode
=
'reflect'
)
pil_padded_img
=
F
.
pad
(
pil_img
,
[
1
,
2
],
padding_mode
=
'reflect'
)
np
.
testing
.
assert_almost_equal
(
np_padded_img
,
np
.
array
(
pil_padded_img
))
pil_p_img
=
pil_img
.
convert
(
'P'
)
pil_padded_img
=
F
.
pad
(
pil_p_img
,
[
1
,
2
])
pil_padded_img
=
F
.
pad
(
pil_p_img
,
[
1
,
2
],
padding_mode
=
'reflect'
)
def
test_resize
(
self
):
np_img
=
(
np
.
zeros
([
28
,
24
,
3
])).
astype
(
'uint8'
)
pil_img
=
Image
.
fromarray
(
np_img
)
np_reseized_img
=
F
.
resize
(
np_img
,
40
)
pil_reseized_img
=
F
.
resize
(
pil_img
,
40
)
np
.
testing
.
assert_almost_equal
(
np_reseized_img
,
np
.
array
(
pil_reseized_img
))
gray_img
=
(
np
.
zeros
([
28
,
32
])).
astype
(
'uint8'
)
gray_resize_img
=
F
.
resize
(
gray_img
,
40
)
def
test_to_tensor
(
self
):
np_img
=
(
np
.
random
.
rand
(
28
,
28
)
*
255
).
astype
(
'uint8'
)
pil_img
=
Image
.
fromarray
(
np_img
)
np_tensor
=
F
.
to_tensor
(
np_img
,
data_format
=
'HWC'
)
pil_tensor
=
F
.
to_tensor
(
pil_img
,
data_format
=
'HWC'
)
np
.
testing
.
assert_allclose
(
np_tensor
.
numpy
(),
pil_tensor
.
numpy
())
# test float dtype
float_img
=
np
.
random
.
rand
(
28
,
28
)
float_tensor
=
F
.
to_tensor
(
float_img
)
pil_img
=
Image
.
fromarray
(
np_img
).
convert
(
'I'
)
pil_tensor
=
F
.
to_tensor
(
pil_img
)
pil_img
=
Image
.
fromarray
(
np_img
).
convert
(
'I;16'
)
pil_tensor
=
F
.
to_tensor
(
pil_img
)
pil_img
=
Image
.
fromarray
(
np_img
).
convert
(
'F'
)
pil_tensor
=
F
.
to_tensor
(
pil_img
)
pil_img
=
Image
.
fromarray
(
np_img
).
convert
(
'1'
)
pil_tensor
=
F
.
to_tensor
(
pil_img
)
pil_img
=
Image
.
fromarray
(
np_img
).
convert
(
'YCbCr'
)
pil_tensor
=
F
.
to_tensor
(
pil_img
)
def
test_image_load
(
self
):
fake_img
=
Image
.
fromarray
((
np
.
random
.
random
((
32
,
32
,
3
))
*
255
).
astype
(
'uint8'
))
path
=
'temp.jpg'
fake_img
.
save
(
path
)
set_image_backend
(
'pil'
)
pil_img
=
image_load
(
path
).
convert
(
'RGB'
)
print
(
type
(
pil_img
))
set_image_backend
(
'cv2'
)
np_img
=
image_load
(
path
)
os
.
remove
(
path
)
if
__name__
==
'__main__'
:
...
...
python/paddle/vision/__init__.py
浏览文件 @
172e76a8
...
...
@@ -21,6 +21,10 @@ from .transforms import *
from
.
import
datasets
from
.datasets
import
*
from
.
import
image
from
.image
import
*
__all__
=
models
.
__all__
\
+
transforms
.
__all__
\
+
datasets
.
__all__
+
datasets
.
__all__
\
+
image
.
__all__
python/paddle/vision/datasets/folder.py
浏览文件 @
172e76a8
...
...
@@ -14,6 +14,7 @@
import
os
import
sys
from
PIL
import
Image
import
paddle
from
paddle.io
import
Dataset
...
...
@@ -136,7 +137,7 @@ class DatasetFolder(Dataset):
"Found 0 files in subfolders of: "
+
self
.
root
+
"
\n
"
"Supported extensions are: "
+
","
.
join
(
extensions
)))
self
.
loader
=
cv2
_loader
if
loader
is
None
else
loader
self
.
loader
=
default
_loader
if
loader
is
None
else
loader
self
.
extensions
=
extensions
self
.
classes
=
classes
...
...
@@ -193,9 +194,23 @@ IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif',
'.tiff'
,
'.webp'
)
def
pil_loader
(
path
):
with
open
(
path
,
'rb'
)
as
f
:
img
=
Image
.
open
(
f
)
return
img
.
convert
(
'RGB'
)
def
cv2_loader
(
path
):
cv2
=
try_import
(
'cv2'
)
return
cv2
.
imread
(
path
)
return
cv2
.
cvtColor
(
cv2
.
imread
(
path
),
cv2
.
COLOR_BGR2RGB
)
def
default_loader
(
path
):
from
paddle.vision
import
get_image_backend
if
get_image_backend
()
==
'cv2'
:
return
cv2_loader
(
path
)
else
:
return
pil_loader
(
path
)
class
ImageFolder
(
Dataset
):
...
...
@@ -280,7 +295,7 @@ class ImageFolder(Dataset):
"Found 0 files in subfolders of: "
+
self
.
root
+
"
\n
"
"Supported extensions are: "
+
","
.
join
(
extensions
)))
self
.
loader
=
cv2
_loader
if
loader
is
None
else
loader
self
.
loader
=
default
_loader
if
loader
is
None
else
loader
self
.
extensions
=
extensions
self
.
samples
=
samples
self
.
transform
=
transform
...
...
python/paddle/vision/image.py
0 → 100644
浏览文件 @
172e76a8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
PIL
import
Image
from
paddle.utils
import
try_import
__all__
=
[
'set_image_backend'
,
'get_image_backend'
,
'image_load'
]
_image_backend
=
'pil'
def
set_image_backend
(
backend
):
"""
Specifies the backend used to load images in class ``paddle.vision.datasets.ImageFolder``
and ``paddle.vision.datasets.DatasetFolder`` . Now support backends are pillow and opencv.
If backend not set, will use 'pil' as default.
Args:
backend (str): Name of the image load backend, should be one of {'pil', 'cv2'}.
Examples:
.. code-block:: python
import os
import shutil
import tempfile
import numpy as np
from PIL import Image
from paddle.vision import DatasetFolder
from paddle.vision import set_image_backend
set_image_backend('pil')
def make_fake_dir():
data_dir = tempfile.mkdtemp()
for i in range(2):
sub_dir = os.path.join(data_dir, 'class_' + str(i))
if not os.path.exists(sub_dir):
os.makedirs(sub_dir)
for j in range(2):
fake_img = Image.fromarray((np.random.random((32, 32, 3)) * 255).astype('uint8'))
fake_img.save(os.path.join(sub_dir, str(j) + '.png'))
return data_dir
temp_dir = make_fake_dir()
pil_data_folder = DatasetFolder(temp_dir)
for items in pil_data_folder:
break
# should get PIL.Image.Image
print(type(items[0]))
# use opencv as backend
# set_image_backend('cv2')
# cv2_data_folder = DatasetFolder(temp_dir)
# for items in cv2_data_folder:
# break
# should get numpy.ndarray
# print(type(items[0]))
shutil.rmtree(temp_dir)
"""
global
_image_backend
if
backend
not
in
[
'pil'
,
'cv2'
]:
raise
ValueError
(
"Expected backend are one of ['pil', 'cv2'], but got {}"
.
format
(
backend
))
_image_backend
=
backend
def
get_image_backend
():
"""
Gets the name of the package used to load images
Returns:
str: backend of image load.
Examples:
.. code-block:: python
from paddle.vision import get_image_backend
backend = get_image_backend()
print(backend)
"""
return
_image_backend
def
image_load
(
path
,
backend
=
None
):
"""Load an image.
Args:
path (str): Path of the image.
backend (str, optional): The image decoding backend type. Options are
`cv2`, `pil`, `None`. If backend is None, the global _imread_backend
specified by ``paddle.vision.set_image_backend`` will be used. Default: None.
Returns:
PIL.Image or np.array: Loaded image.
Examples:
.. code-block:: python
import numpy as np
from PIL import Image
from paddle.vision import image_load, set_image_backend
fake_img = Image.fromarray((np.random.random((32, 32, 3)) * 255).astype('uint8'))
path = 'temp.png'
fake_img.save(path)
set_image_backend('pil')
pil_img = image_load(path).convert('RGB')
# should be PIL.Image.Image
print(type(pil_img))
# use opencv as backend
# set_image_backend('cv2')
# np_img = image_load(path)
# # should get numpy.ndarray
# print(type(np_img))
"""
if
backend
is
None
:
backend
=
_image_backend
if
backend
not
in
[
'pil'
,
'cv2'
]:
raise
ValueError
(
"Expected backend are one of ['pil', 'cv2'], but got {}"
.
format
(
backend
))
if
backend
==
'pil'
:
return
Image
.
open
(
path
)
else
:
cv2
=
try_import
(
'cv2'
)
return
cv2
.
imread
(
path
)
python/paddle/vision/transforms/functional.py
浏览文件 @
172e76a8
此差异已折叠。
点击以展开。
python/paddle/vision/transforms/functional_cv2.py
0 → 100644
浏览文件 @
172e76a8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
division
import
sys
import
numbers
import
warnings
import
collections
import
numpy
as
np
from
numpy
import
sin
,
cos
,
tan
import
paddle
from
paddle.utils
import
try_import
if
sys
.
version_info
<
(
3
,
3
):
Sequence
=
collections
.
Sequence
Iterable
=
collections
.
Iterable
else
:
Sequence
=
collections
.
abc
.
Sequence
Iterable
=
collections
.
abc
.
Iterable
def
to_tensor
(
pic
,
data_format
=
'CHW'
):
"""Converts a ``numpy.ndarray`` to paddle.Tensor.
See ``ToTensor`` for more details.
Args:
pic (np.ndarray): Image to be converted to tensor.
data_format (str, optional): Data format of img, should be 'HWC' or
'CHW'. Default: 'CHW'.
Returns:
Tensor: Converted image.
"""
if
not
data_format
in
[
'CHW'
,
'HWC'
]:
raise
ValueError
(
'data_format should be CHW or HWC. Got {}'
.
format
(
data_format
))
if
pic
.
ndim
==
2
:
pic
=
pic
[:,
:,
None
]
if
data_format
==
'CHW'
:
img
=
paddle
.
to_tensor
(
pic
.
transpose
((
2
,
0
,
1
)))
else
:
img
=
paddle
.
to_tensor
(
pic
)
if
paddle
.
fluid
.
data_feeder
.
convert_dtype
(
img
.
dtype
)
==
'uint8'
:
return
paddle
.
cast
(
img
,
np
.
float32
)
/
255.
else
:
return
img
def
resize
(
img
,
size
,
interpolation
=
'bilinear'
):
"""
Resizes the image to given size
Args:
input (np.ndarray): Image to be resized.
size (int|list|tuple): Target size of input data, with (height, width) shape.
interpolation (int|str, optional): Interpolation method. when use cv2 backend,
support method are as following:
- "nearest": cv2.INTER_NEAREST,
- "bilinear": cv2.INTER_LINEAR,
- "area": cv2.INTER_AREA,
- "bicubic": cv2.INTER_CUBIC,
- "lanczos": cv2.INTER_LANCZOS4
Returns:
np.array: Resized image.
"""
cv2
=
try_import
(
'cv2'
)
_cv2_interp_from_str
=
{
'nearest'
:
cv2
.
INTER_NEAREST
,
'bilinear'
:
cv2
.
INTER_LINEAR
,
'area'
:
cv2
.
INTER_AREA
,
'bicubic'
:
cv2
.
INTER_CUBIC
,
'lanczos'
:
cv2
.
INTER_LANCZOS4
}
if
not
(
isinstance
(
size
,
int
)
or
(
isinstance
(
size
,
Iterable
)
and
len
(
size
)
==
2
)):
raise
TypeError
(
'Got inappropriate size arg: {}'
.
format
(
size
))
h
,
w
=
img
.
shape
[:
2
]
if
isinstance
(
size
,
int
):
if
(
w
<=
h
and
w
==
size
)
or
(
h
<=
w
and
h
==
size
):
return
img
if
w
<
h
:
ow
=
size
oh
=
int
(
size
*
h
/
w
)
output
=
cv2
.
resize
(
img
,
dsize
=
(
ow
,
oh
),
interpolation
=
_cv2_interp_from_str
[
interpolation
])
else
:
oh
=
size
ow
=
int
(
size
*
w
/
h
)
output
=
cv2
.
resize
(
img
,
dsize
=
(
ow
,
oh
),
interpolation
=
_cv2_interp_from_str
[
interpolation
])
else
:
output
=
cv2
.
resize
(
img
,
dsize
=
(
size
[
1
],
size
[
0
]),
interpolation
=
_cv2_interp_from_str
[
interpolation
])
if
len
(
img
.
shape
)
==
3
and
img
.
shape
[
2
]
==
1
:
return
output
[:,
:,
np
.
newaxis
]
else
:
return
output
def
pad
(
img
,
padding
,
fill
=
0
,
padding_mode
=
'constant'
):
"""
Pads the given numpy.array on all sides with specified padding mode and fill value.
Args:
img (np.array): Image to be padded.
padding (int|list|tuple): Padding on each border. If a single int is provided this
is used to pad all borders. If tuple of length 2 is provided this is the padding
on left/right and top/bottom respectively. If a tuple of length 4 is provided
this is the padding for the left, top, right and bottom borders
respectively.
fill (float, optional): Pixel fill value for constant fill. If a tuple of
length 3, it is used to fill R, G, B channels respectively.
This value is only used when the padding_mode is constant. Default: 0.
padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default: 'constant'.
- constant: pads with a constant value, this value is specified with fill
- edge: pads with the last value on the edge of the image
- reflect: pads with reflection of image (without repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
will result in [3, 2, 1, 2, 3, 4, 3, 2]
- symmetric: pads with reflection of image (repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
will result in [2, 1, 1, 2, 3, 4, 4, 3]
Returns:
np.array: Padded image.
"""
cv2
=
try_import
(
'cv2'
)
_cv2_pad_from_str
=
{
'constant'
:
cv2
.
BORDER_CONSTANT
,
'edge'
:
cv2
.
BORDER_REPLICATE
,
'reflect'
:
cv2
.
BORDER_REFLECT_101
,
'symmetric'
:
cv2
.
BORDER_REFLECT
}
if
not
isinstance
(
padding
,
(
numbers
.
Number
,
list
,
tuple
)):
raise
TypeError
(
'Got inappropriate padding arg'
)
if
not
isinstance
(
fill
,
(
numbers
.
Number
,
str
,
list
,
tuple
)):
raise
TypeError
(
'Got inappropriate fill arg'
)
if
not
isinstance
(
padding_mode
,
str
):
raise
TypeError
(
'Got inappropriate padding_mode arg'
)
if
isinstance
(
padding
,
Sequence
)
and
len
(
padding
)
not
in
[
2
,
4
]:
raise
ValueError
(
"Padding must be an int or a 2, or 4 element tuple, not a "
+
"{} element tuple"
.
format
(
len
(
padding
)))
assert
padding_mode
in
[
'constant'
,
'edge'
,
'reflect'
,
'symmetric'
],
\
'Padding mode should be either constant, edge, reflect or symmetric'
if
isinstance
(
padding
,
list
):
padding
=
tuple
(
padding
)
if
isinstance
(
padding
,
int
):
pad_left
=
pad_right
=
pad_top
=
pad_bottom
=
padding
if
isinstance
(
padding
,
Sequence
)
and
len
(
padding
)
==
2
:
pad_left
=
pad_right
=
padding
[
0
]
pad_top
=
pad_bottom
=
padding
[
1
]
if
isinstance
(
padding
,
Sequence
)
and
len
(
padding
)
==
4
:
pad_left
=
padding
[
0
]
pad_top
=
padding
[
1
]
pad_right
=
padding
[
2
]
pad_bottom
=
padding
[
3
]
if
len
(
img
.
shape
)
==
3
and
img
.
shape
[
2
]
==
1
:
return
cv2
.
copyMakeBorder
(
img
,
top
=
pad_top
,
bottom
=
pad_bottom
,
left
=
pad_left
,
right
=
pad_right
,
borderType
=
_cv2_pad_from_str
[
padding_mode
],
value
=
fill
)[:,
:,
np
.
newaxis
]
else
:
return
cv2
.
copyMakeBorder
(
img
,
top
=
pad_top
,
bottom
=
pad_bottom
,
left
=
pad_left
,
right
=
pad_right
,
borderType
=
_cv2_pad_from_str
[
padding_mode
],
value
=
fill
)
def
crop
(
img
,
top
,
left
,
height
,
width
):
"""Crops the given image.
Args:
img (np.array): Image to be cropped. (0,0) denotes the top left
corner of the image.
top (int): Vertical component of the top left corner of the crop box.
left (int): Horizontal component of the top left corner of the crop box.
height (int): Height of the crop box.
width (int): Width of the crop box.
Returns:
np.array: Cropped image.
"""
return
img
[
top
:
top
+
height
,
left
:
left
+
width
,
:]
def
center_crop
(
img
,
output_size
):
"""Crops the given image and resize it to desired size.
Args:
img (np.array): Image to be cropped. (0,0) denotes the top left corner of the image.
output_size (sequence or int): (height, width) of the crop box. If int,
it is used for both directions
backend (str, optional): The image proccess backend type. Options are `pil`, `cv2`. Default: 'pil'.
Returns:
np.array: Cropped image.
"""
if
isinstance
(
output_size
,
numbers
.
Number
):
output_size
=
(
int
(
output_size
),
int
(
output_size
))
h
,
w
=
img
.
shape
[
0
:
2
]
th
,
tw
=
output_size
i
=
int
(
round
((
h
-
th
)
/
2.
))
j
=
int
(
round
((
w
-
tw
)
/
2.
))
return
crop
(
img
,
i
,
j
,
th
,
tw
)
def
hflip
(
img
):
"""Horizontally flips the given image.
Args:
img (np.array): Image to be flipped.
Returns:
np.array: Horizontall flipped image.
"""
cv2
=
try_import
(
'cv2'
)
return
cv2
.
flip
(
img
,
1
)
def
vflip
(
img
):
"""Vertically flips the given np.array.
Args:
img (np.array): Image to be flipped.
Returns:
np.array: Vertically flipped image.
"""
cv2
=
try_import
(
'cv2'
)
if
len
(
img
.
shape
)
==
3
and
img
.
shape
[
2
]
==
1
:
return
cv2
.
flip
(
img
,
0
)[:,
:,
np
.
newaxis
]
else
:
return
cv2
.
flip
(
img
,
0
)
def
adjust_brightness
(
img
,
brightness_factor
):
"""Adjusts brightness of an image.
Args:
img (np.array): Image to be adjusted.
brightness_factor (float): How much to adjust the brightness. Can be
any non negative number. 0 gives a black image, 1 gives the
original image while 2 increases the brightness by a factor of 2.
Returns:
np.array: Brightness adjusted image.
"""
cv2
=
try_import
(
'cv2'
)
table
=
np
.
array
([
i
*
brightness_factor
for
i
in
range
(
0
,
256
)]).
clip
(
0
,
255
).
astype
(
'uint8'
)
if
len
(
img
.
shape
)
==
3
and
img
.
shape
[
2
]
==
1
:
return
cv2
.
LUT
(
img
,
table
)[:,
:,
np
.
newaxis
]
else
:
return
cv2
.
LUT
(
img
,
table
)
def
adjust_contrast
(
img
,
contrast_factor
):
"""Adjusts contrast of an image.
Args:
img (np.array): Image to be adjusted.
contrast_factor (float): How much to adjust the contrast. Can be any
non negative number. 0 gives a solid gray image, 1 gives the
original image while 2 increases the contrast by a factor of 2.
Returns:
np.array: Contrast adjusted image.
"""
cv2
=
try_import
(
'cv2'
)
table
=
np
.
array
([(
i
-
74
)
*
contrast_factor
+
74
for
i
in
range
(
0
,
256
)]).
clip
(
0
,
255
).
astype
(
'uint8'
)
if
len
(
img
.
shape
)
==
3
and
img
.
shape
[
2
]
==
1
:
return
cv2
.
LUT
(
img
,
table
)[:,
:,
np
.
newaxis
]
else
:
return
cv2
.
LUT
(
img
,
table
)
def
adjust_saturation
(
img
,
saturation_factor
):
"""Adjusts color saturation of an image.
Args:
img (np.array): Image to be adjusted.
saturation_factor (float): How much to adjust the saturation. 0 will
give a black and white image, 1 will give the original image while
2 will enhance the saturation by a factor of 2.
Returns:
np.array: Saturation adjusted image.
"""
cv2
=
try_import
(
'cv2'
)
dtype
=
img
.
dtype
img
=
img
.
astype
(
np
.
float32
)
alpha
=
np
.
random
.
uniform
(
max
(
0
,
1
-
saturation_factor
),
1
+
saturation_factor
)
gray_img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2GRAY
)
gray_img
=
gray_img
[...,
np
.
newaxis
]
img
=
img
*
alpha
+
gray_img
*
(
1
-
alpha
)
return
img
.
clip
(
0
,
255
).
astype
(
dtype
)
def
adjust_hue
(
img
,
hue_factor
):
"""Adjusts hue of an image.
The image hue is adjusted by converting the image to HSV and
cyclically shifting the intensities in the hue channel (H).
The image is then converted back to original image mode.
`hue_factor` is the amount of shift in H channel and must be in the
interval `[-0.5, 0.5]`.
Args:
img (np.array): Image to be adjusted.
hue_factor (float): How much to shift the hue channel. Should be in
[-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
HSV space in positive and negative direction respectively.
0 means no shift. Therefore, both -0.5 and 0.5 will give an image
with complementary colors while 0 gives the original image.
Returns:
np.array: Hue adjusted image.
"""
cv2
=
try_import
(
'cv2'
)
if
not
(
-
0.5
<=
hue_factor
<=
0.5
):
raise
ValueError
(
'hue_factor is not in [-0.5, 0.5].'
.
format
(
hue_factor
))
dtype
=
img
.
dtype
img
=
img
.
astype
(
np
.
uint8
)
hsv_img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2HSV_FULL
)
h
,
s
,
v
=
cv2
.
split
(
hsv_img
)
alpha
=
np
.
random
.
uniform
(
hue_factor
,
hue_factor
)
h
=
h
.
astype
(
np
.
uint8
)
# uint8 addition take cares of rotation across boundaries
with
np
.
errstate
(
over
=
"ignore"
):
h
+=
np
.
uint8
(
alpha
*
255
)
hsv_img
=
cv2
.
merge
([
h
,
s
,
v
])
return
cv2
.
cvtColor
(
hsv_img
,
cv2
.
COLOR_HSV2BGR_FULL
).
astype
(
dtype
)
def
rotate
(
img
,
angle
,
resample
=
False
,
expand
=
False
,
center
=
None
,
fill
=
0
):
"""Rotates the image by angle.
Args:
img (np.array): Image to be rotated.
angle (float or int): In degrees degrees counter clockwise order.
resample (int|str, optional): An optional resampling filter. If omitted, or if the
image has only one channel, it is set to cv2.INTER_NEAREST.
when use cv2 backend, support method are as following:
- "nearest": cv2.INTER_NEAREST,
- "bilinear": cv2.INTER_LINEAR,
- "bicubic": cv2.INTER_CUBIC
expand (bool, optional): Optional expansion flag.
If true, expands the output image to make it large enough to hold the entire rotated image.
If false or omitted, make the output image the same size as the input image.
Note that the expand flag assumes rotation around the center and no translation.
center (2-tuple, optional): Optional center of rotation.
Origin is the upper left corner.
Default is the center of the image.
fill (3-tuple or int): RGB pixel fill value for area outside the rotated image.
If int, it is used for all channels respectively.
Returns:
np.array: Rotated image.
"""
cv2
=
try_import
(
'cv2'
)
rows
,
cols
=
img
.
shape
[
0
:
2
]
if
center
is
None
:
center
=
(
cols
/
2
,
rows
/
2
)
M
=
cv2
.
getRotationMatrix2D
(
center
,
angle
,
1
)
if
len
(
img
.
shape
)
==
3
and
img
.
shape
[
2
]
==
1
:
return
cv2
.
warpAffine
(
img
,
M
,
(
cols
,
rows
))[:,
:,
np
.
newaxis
]
else
:
return
cv2
.
warpAffine
(
img
,
M
,
(
cols
,
rows
))
def
to_grayscale
(
img
,
num_output_channels
=
1
):
"""Converts image to grayscale version of image.
Args:
img (np.array): Image to be converted to grayscale.
Returns:
np.array: Grayscale version of the image.
if num_output_channels = 1 : returned image is single channel
if num_output_channels = 3 : returned image is 3 channel with r = g = b
"""
cv2
=
try_import
(
'cv2'
)
if
num_output_channels
==
1
:
img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_RGB2GRAY
)[:,
:,
np
.
newaxis
]
elif
num_output_channels
==
3
:
# much faster than doing cvtColor to go back to gray
img
=
np
.
broadcast_to
(
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_RGB2GRAY
)[:,
:,
np
.
newaxis
],
img
.
shape
)
else
:
raise
ValueError
(
'num_output_channels should be either 1 or 3'
)
return
img
def
normalize
(
img
,
mean
,
std
,
data_format
=
'CHW'
,
to_rgb
=
False
):
"""Normalizes a ndarray imge or image with mean and standard deviation.
Args:
img (np.array): input data to be normalized.
mean (list|tuple): Sequence of means for each channel.
std (list|tuple): Sequence of standard deviations for each channel.
data_format (str, optional): Data format of img, should be 'HWC' or
'CHW'. Default: 'CHW'.
to_rgb (bool, optional): Whether to convert to rgb. Default: False.
Returns:
np.array: Normalized mage.
"""
if
data_format
==
'CHW'
:
mean
=
np
.
float32
(
np
.
array
(
mean
).
reshape
(
-
1
,
1
,
1
))
std
=
np
.
float32
(
np
.
array
(
std
).
reshape
(
-
1
,
1
,
1
))
else
:
mean
=
np
.
float32
(
np
.
array
(
mean
).
reshape
(
1
,
1
,
-
1
))
std
=
np
.
float32
(
np
.
array
(
std
).
reshape
(
1
,
1
,
-
1
))
if
to_rgb
:
cv2
=
try_import
(
'cv2'
)
# inplace
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2RGB
,
img
)
img
=
(
img
-
mean
)
/
std
return
img
python/paddle/vision/transforms/functional_pil.py
0 → 100644
浏览文件 @
172e76a8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
division
import
sys
import
math
import
numbers
import
warnings
import
collections
from
PIL
import
Image
,
ImageOps
,
ImageEnhance
import
numpy
as
np
from
numpy
import
sin
,
cos
,
tan
import
paddle
if
sys
.
version_info
<
(
3
,
3
):
Sequence
=
collections
.
Sequence
Iterable
=
collections
.
Iterable
else
:
Sequence
=
collections
.
abc
.
Sequence
Iterable
=
collections
.
abc
.
Iterable
_pil_interp_from_str
=
{
'nearest'
:
Image
.
NEAREST
,
'bilinear'
:
Image
.
BILINEAR
,
'bicubic'
:
Image
.
BICUBIC
,
'box'
:
Image
.
BOX
,
'lanczos'
:
Image
.
LANCZOS
,
'hamming'
:
Image
.
HAMMING
}
def
to_tensor
(
pic
,
data_format
=
'CHW'
):
"""Converts a ``PIL.Image`` to paddle.Tensor.
See ``ToTensor`` for more details.
Args:
pic (PIL.Image): Image to be converted to tensor.
data_format (str, optional): Data format of img, should be 'HWC' or
'CHW'. Default: 'CHW'.
Returns:
Tensor: Converted image.
"""
if
not
data_format
in
[
'CHW'
,
'HWC'
]:
raise
ValueError
(
'data_format should be CHW or HWC. Got {}'
.
format
(
data_format
))
# PIL Image
if
pic
.
mode
==
'I'
:
img
=
paddle
.
to_tensor
(
np
.
array
(
pic
,
np
.
int32
,
copy
=
False
))
elif
pic
.
mode
==
'I;16'
:
# cast and reshape not support int16
img
=
paddle
.
to_tensor
(
np
.
array
(
pic
,
np
.
int32
,
copy
=
False
))
elif
pic
.
mode
==
'F'
:
img
=
paddle
.
to_tensor
(
np
.
array
(
pic
,
np
.
float32
,
copy
=
False
))
elif
pic
.
mode
==
'1'
:
img
=
255
*
paddle
.
to_tensor
(
np
.
array
(
pic
,
np
.
uint8
,
copy
=
False
))
else
:
img
=
paddle
.
to_tensor
(
np
.
array
(
pic
,
copy
=
False
))
if
pic
.
mode
==
'YCbCr'
:
nchannel
=
3
elif
pic
.
mode
==
'I;16'
:
nchannel
=
1
else
:
nchannel
=
len
(
pic
.
mode
)
dtype
=
paddle
.
fluid
.
data_feeder
.
convert_dtype
(
img
.
dtype
)
if
dtype
==
'uint8'
:
img
=
paddle
.
cast
(
img
,
np
.
float32
)
/
255.
img
=
img
.
reshape
([
pic
.
size
[
1
],
pic
.
size
[
0
],
nchannel
])
if
data_format
==
'CHW'
:
img
=
img
.
transpose
([
2
,
0
,
1
])
return
img
def
resize
(
img
,
size
,
interpolation
=
'bilinear'
):
"""
Resizes the image to given size
Args:
input (PIL.Image): Image to be resized.
size (int|list|tuple): Target size of input data, with (height, width) shape.
interpolation (int|str, optional): Interpolation method. when use pil backend,
support method are as following:
- "nearest": Image.NEAREST,
- "bilinear": Image.BILINEAR,
- "bicubic": Image.BICUBIC,
- "box": Image.BOX,
- "lanczos": Image.LANCZOS,
- "hamming": Image.HAMMING
Returns:
PIL.Image: Resized image.
"""
if
not
(
isinstance
(
size
,
int
)
or
(
isinstance
(
size
,
Iterable
)
and
len
(
size
)
==
2
)):
raise
TypeError
(
'Got inappropriate size arg: {}'
.
format
(
size
))
if
isinstance
(
size
,
int
):
w
,
h
=
img
.
size
if
(
w
<=
h
and
w
==
size
)
or
(
h
<=
w
and
h
==
size
):
return
img
if
w
<
h
:
ow
=
size
oh
=
int
(
size
*
h
/
w
)
return
img
.
resize
((
ow
,
oh
),
_pil_interp_from_str
[
interpolation
])
else
:
oh
=
size
ow
=
int
(
size
*
w
/
h
)
return
img
.
resize
((
ow
,
oh
),
_pil_interp_from_str
[
interpolation
])
else
:
return
img
.
resize
(
size
[::
-
1
],
_pil_interp_from_str
[
interpolation
])
def
pad
(
img
,
padding
,
fill
=
0
,
padding_mode
=
'constant'
):
"""
Pads the given PIL.Image on all sides with specified padding mode and fill value.
Args:
img (PIL.Image): Image to be padded.
padding (int|list|tuple): Padding on each border. If a single int is provided this
is used to pad all borders. If tuple of length 2 is provided this is the padding
on left/right and top/bottom respectively. If a tuple of length 4 is provided
this is the padding for the left, top, right and bottom borders
respectively.
fill (float, optional): Pixel fill value for constant fill. If a tuple of
length 3, it is used to fill R, G, B channels respectively.
This value is only used when the padding_mode is constant. Default: 0.
padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default: 'constant'.
- constant: pads with a constant value, this value is specified with fill
- edge: pads with the last value on the edge of the image
- reflect: pads with reflection of image (without repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
will result in [3, 2, 1, 2, 3, 4, 3, 2]
- symmetric: pads with reflection of image (repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
will result in [2, 1, 1, 2, 3, 4, 4, 3]
Returns:
PIL.Image: Padded image.
"""
if
not
isinstance
(
padding
,
(
numbers
.
Number
,
list
,
tuple
)):
raise
TypeError
(
'Got inappropriate padding arg'
)
if
not
isinstance
(
fill
,
(
numbers
.
Number
,
str
,
list
,
tuple
)):
raise
TypeError
(
'Got inappropriate fill arg'
)
if
not
isinstance
(
padding_mode
,
str
):
raise
TypeError
(
'Got inappropriate padding_mode arg'
)
if
isinstance
(
padding
,
Sequence
)
and
len
(
padding
)
not
in
[
2
,
4
]:
raise
ValueError
(
"Padding must be an int or a 2, or 4 element tuple, not a "
+
"{} element tuple"
.
format
(
len
(
padding
)))
assert
padding_mode
in
[
'constant'
,
'edge'
,
'reflect'
,
'symmetric'
],
\
'Padding mode should be either constant, edge, reflect or symmetric'
if
isinstance
(
padding
,
list
):
padding
=
tuple
(
padding
)
if
isinstance
(
padding
,
int
):
pad_left
=
pad_right
=
pad_top
=
pad_bottom
=
padding
if
isinstance
(
padding
,
Sequence
)
and
len
(
padding
)
==
2
:
pad_left
=
pad_right
=
padding
[
0
]
pad_top
=
pad_bottom
=
padding
[
1
]
if
isinstance
(
padding
,
Sequence
)
and
len
(
padding
)
==
4
:
pad_left
=
padding
[
0
]
pad_top
=
padding
[
1
]
pad_right
=
padding
[
2
]
pad_bottom
=
padding
[
3
]
if
padding_mode
==
'constant'
:
if
img
.
mode
==
'P'
:
palette
=
img
.
getpalette
()
image
=
ImageOps
.
expand
(
img
,
border
=
padding
,
fill
=
fill
)
image
.
putpalette
(
palette
)
return
image
return
ImageOps
.
expand
(
img
,
border
=
padding
,
fill
=
fill
)
else
:
if
img
.
mode
==
'P'
:
palette
=
img
.
getpalette
()
img
=
np
.
asarray
(
img
)
img
=
np
.
pad
(
img
,
((
pad_top
,
pad_bottom
),
(
pad_left
,
pad_right
)),
padding_mode
)
img
=
Image
.
fromarray
(
img
)
img
.
putpalette
(
palette
)
return
img
img
=
np
.
asarray
(
img
)
# RGB image
if
len
(
img
.
shape
)
==
3
:
img
=
np
.
pad
(
img
,
((
pad_top
,
pad_bottom
),
(
pad_left
,
pad_right
),
(
0
,
0
)),
padding_mode
)
# Grayscale image
if
len
(
img
.
shape
)
==
2
:
img
=
np
.
pad
(
img
,
((
pad_top
,
pad_bottom
),
(
pad_left
,
pad_right
)),
padding_mode
)
return
Image
.
fromarray
(
img
)
def
crop
(
img
,
top
,
left
,
height
,
width
):
"""Crops the given PIL Image.
Args:
img (PIL.Image): Image to be cropped. (0,0) denotes the top left
corner of the image.
top (int): Vertical component of the top left corner of the crop box.
left (int): Horizontal component of the top left corner of the crop box.
height (int): Height of the crop box.
width (int): Width of the crop box.
Returns:
PIL.Image: Cropped image.
"""
return
img
.
crop
((
left
,
top
,
left
+
width
,
top
+
height
))
def
center_crop
(
img
,
output_size
):
"""Crops the given PIL Image and resize it to desired size.
Args:
img (PIL.Image): Image to be cropped. (0,0) denotes the top left corner of the image.
output_size (sequence or int): (height, width) of the crop box. If int,
it is used for both directions
backend (str, optional): The image proccess backend type. Options are `pil`, `cv2`. Default: 'pil'.
Returns:
PIL.Image: Cropped image.
"""
if
isinstance
(
output_size
,
numbers
.
Number
):
output_size
=
(
int
(
output_size
),
int
(
output_size
))
image_width
,
image_height
=
img
.
size
crop_height
,
crop_width
=
output_size
crop_top
=
int
(
round
((
image_height
-
crop_height
)
/
2.
))
crop_left
=
int
(
round
((
image_width
-
crop_width
)
/
2.
))
return
crop
(
img
,
crop_top
,
crop_left
,
crop_height
,
crop_width
)
def
hflip
(
img
):
"""Horizontally flips the given PIL Image.
Args:
img (PIL.Image): Image to be flipped.
Returns:
PIL.Image: Horizontall flipped image.
"""
return
img
.
transpose
(
Image
.
FLIP_LEFT_RIGHT
)
def
vflip
(
img
):
"""Vertically flips the given PIL Image.
Args:
img (PIL.Image): Image to be flipped.
Returns:
PIL.Image: Vertically flipped image.
"""
return
img
.
transpose
(
Image
.
FLIP_TOP_BOTTOM
)
def
adjust_brightness
(
img
,
brightness_factor
):
"""Adjusts brightness of an Image.
Args:
img (PIL.Image): PIL Image to be adjusted.
brightness_factor (float): How much to adjust the brightness. Can be
any non negative number. 0 gives a black image, 1 gives the
original image while 2 increases the brightness by a factor of 2.
Returns:
PIL.Image: Brightness adjusted image.
"""
enhancer
=
ImageEnhance
.
Brightness
(
img
)
img
=
enhancer
.
enhance
(
brightness_factor
)
return
img
def
adjust_contrast
(
img
,
contrast_factor
):
"""Adjusts contrast of an Image.
Args:
img (PIL.Image): PIL Image to be adjusted.
contrast_factor (float): How much to adjust the contrast. Can be any
non negative number. 0 gives a solid gray image, 1 gives the
original image while 2 increases the contrast by a factor of 2.
Returns:
PIL.Image: Contrast adjusted image.
"""
enhancer
=
ImageEnhance
.
Contrast
(
img
)
img
=
enhancer
.
enhance
(
contrast_factor
)
return
img
def
adjust_saturation
(
img
,
saturation_factor
):
"""Adjusts color saturation of an image.
Args:
img (PIL.Image): PIL Image to be adjusted.
saturation_factor (float): How much to adjust the saturation. 0 will
give a black and white image, 1 will give the original image while
2 will enhance the saturation by a factor of 2.
Returns:
PIL.Image: Saturation adjusted image.
"""
enhancer
=
ImageEnhance
.
Color
(
img
)
img
=
enhancer
.
enhance
(
saturation_factor
)
return
img
def
adjust_hue
(
img
,
hue_factor
):
"""Adjusts hue of an image.
The image hue is adjusted by converting the image to HSV and
cyclically shifting the intensities in the hue channel (H).
The image is then converted back to original image mode.
`hue_factor` is the amount of shift in H channel and must be in the
interval `[-0.5, 0.5]`.
Args:
img (PIL.Image): PIL Image to be adjusted.
hue_factor (float): How much to shift the hue channel. Should be in
[-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
HSV space in positive and negative direction respectively.
0 means no shift. Therefore, both -0.5 and 0.5 will give an image
with complementary colors while 0 gives the original image.
Returns:
PIL.Image: Hue adjusted image.
"""
if
not
(
-
0.5
<=
hue_factor
<=
0.5
):
raise
ValueError
(
'hue_factor is not in [-0.5, 0.5].'
.
format
(
hue_factor
))
input_mode
=
img
.
mode
if
input_mode
in
{
'L'
,
'1'
,
'I'
,
'F'
}:
return
img
h
,
s
,
v
=
img
.
convert
(
'HSV'
).
split
()
np_h
=
np
.
array
(
h
,
dtype
=
np
.
uint8
)
# uint8 addition take cares of rotation across boundaries
with
np
.
errstate
(
over
=
'ignore'
):
np_h
+=
np
.
uint8
(
hue_factor
*
255
)
h
=
Image
.
fromarray
(
np_h
,
'L'
)
img
=
Image
.
merge
(
'HSV'
,
(
h
,
s
,
v
)).
convert
(
input_mode
)
return
img
def
rotate
(
img
,
angle
,
resample
=
False
,
expand
=
False
,
center
=
None
,
fill
=
0
):
"""Rotates the image by angle.
Args:
img (PIL.Image): Image to be rotated.
angle (float or int): In degrees degrees counter clockwise order.
resample (int|str, optional): An optional resampling filter. If omitted, or if the
image has only one channel, it is set to PIL.Image.NEAREST . when use pil backend,
support method are as following:
- "nearest": Image.NEAREST,
- "bilinear": Image.BILINEAR,
- "bicubic": Image.BICUBIC
expand (bool, optional): Optional expansion flag.
If true, expands the output image to make it large enough to hold the entire rotated image.
If false or omitted, make the output image the same size as the input image.
Note that the expand flag assumes rotation around the center and no translation.
center (2-tuple, optional): Optional center of rotation.
Origin is the upper left corner.
Default is the center of the image.
fill (3-tuple or int): RGB pixel fill value for area outside the rotated image.
If int, it is used for all channels respectively.
Returns:
PIL.Image: Rotated image.
"""
if
isinstance
(
fill
,
int
):
fill
=
tuple
([
fill
]
*
3
)
return
img
.
rotate
(
angle
,
resample
,
expand
,
center
,
fillcolor
=
fill
)
def
to_grayscale
(
img
,
num_output_channels
=
1
):
"""Converts image to grayscale version of image.
Args:
img (PIL.Image): Image to be converted to grayscale.
backend (str, optional): The image proccess backend type. Options are `pil`,
`cv2`. Default: 'pil'.
Returns:
PIL.Image: Grayscale version of the image.
if num_output_channels = 1 : returned image is single channel
if num_output_channels = 3 : returned image is 3 channel with r = g = b
"""
if
num_output_channels
==
1
:
img
=
img
.
convert
(
'L'
)
elif
num_output_channels
==
3
:
img
=
img
.
convert
(
'L'
)
np_img
=
np
.
array
(
img
,
dtype
=
np
.
uint8
)
np_img
=
np
.
dstack
([
np_img
,
np_img
,
np_img
])
img
=
Image
.
fromarray
(
np_img
,
'RGB'
)
else
:
raise
ValueError
(
'num_output_channels should be either 1 or 3'
)
return
img
python/paddle/vision/transforms/functional_tensor.py
0 → 100644
浏览文件 @
172e76a8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
division
import
paddle
def
normalize
(
img
,
mean
,
std
,
data_format
=
'CHW'
):
"""Normalizes a tensor image with mean and standard deviation.
Args:
img (paddle.Tensor): input data to be normalized.
mean (list|tuple): Sequence of means for each channel.
std (list|tuple): Sequence of standard deviations for each channel.
data_format (str, optional): Data format of img, should be 'HWC' or
'CHW'. Default: 'CHW'.
Returns:
Tensor: Normalized mage.
"""
if
data_format
==
'CHW'
:
mean
=
paddle
.
to_tensor
(
mean
).
reshape
([
-
1
,
1
,
1
])
std
=
paddle
.
to_tensor
(
std
).
reshape
([
-
1
,
1
,
1
])
else
:
mean
=
paddle
.
to_tensor
(
mean
)
std
=
paddle
.
to_tensor
(
std
)
return
(
img
-
mean
)
/
std
python/paddle/vision/transforms/transforms.py
浏览文件 @
172e76a8
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录