test_dist_fleet_base.py 12.5 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
16 17 18
"""
    high level unit test for distribute fleet.
"""
19

T
tangwei12 已提交
20 21
import os
import sys
22
import subprocess
T
tangwei12 已提交
23

24 25 26
import six
import shutil
import numpy as np
27 28 29 30
import argparse
from contextlib import closing
import socket
import time
31
import tempfile
32
import unittest
T
tangwei12 已提交
33 34

import paddle.fluid as fluid
35 36
import paddle.fleet.base.role_maker as role_maker
from paddle.fleet.base.util_factory import fleet_util
T
tangwei12 已提交
37
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
38
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory
T
tangwei12 已提交
39

C
Chengmo 已提交
40 41
__all__ = ['FleetDistRunnerBase', 'TestFleetBase', 'runtime_main']

T
tangwei12 已提交
42 43
RUN_STEP = 5
LEARNING_RATE = 0.01
44
DIST_UT_PORT = 0
T
tangwei12 已提交
45 46 47


class FleetDistRunnerBase(object):
48 49 50 51 52 53
    """
        run_pserver,run_trainer : after init role, using transpiler split program
        net : implment by child class, the network of model
        do training : exe run program
    """

54
    def build_role(self, args):
55

56 57
        if args.role.upper() == "PSERVER":
            role = role_maker.UserDefinedRoleMaker(
58 59 60
                is_collective=False,
                init_gloo=True,
                path=args.gloo_path,
61 62
                current_id=args.current_id,
                role=role_maker.Role.SERVER,
63
                worker_endpoints=args.trainer_endpoints.split(","),
64 65 66
                server_endpoints=args.endpoints.split(","))
        else:
            role = role_maker.UserDefinedRoleMaker(
67 68 69
                is_collective=False,
                init_gloo=True,
                path=args.gloo_path,
70 71
                current_id=args.current_id,
                role=role_maker.Role.WORKER,
72
                worker_endpoints=args.trainer_endpoints.split(","),
73
                server_endpoints=args.endpoints.split(","))
74
        self.role = role
75 76 77
        return role

    def build_strategy(self, args):
1
123malin 已提交
78 79 80 81 82 83 84 85 86 87
        self.strategy = None
        if args.mode == "async":
            self.strategy = StrategyFactory.create_async_strategy()
        elif args.mode == "sync":
            self.strategy = StrategyFactory.create_sync_strategy()
        elif args.mode == "half_async":
            self.strategy = StrategyFactory.create_half_async_strategy()
        elif args.mode == "geo":
            self.strategy = StrategyFactory.create_geo_strategy(
                args.geo_sgd_need_push_nums)
88 89 90 91 92 93 94 95 96 97 98
        self.dump_param = os.getenv("dump_param", "").split(",")
        self.dump_fields = os.getenv("dump_fields", "").split(",")
        self.dump_fields_path = os.getenv("dump_fields_path", "")
        debug = int(os.getenv("Debug", "0"))
        if debug:
            self.strategy.set_debug_opt({
                "dump_param": self.dump_param,
                "dump_fields": self.dump_fields,
                "dump_fields_path": self.dump_fields_path
            })

1
123malin 已提交
99 100
        return self.strategy

101
    def build_optimizer(self, avg_cost, strategy):
C
Chengmo 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
        use_grad_clip = int(os.getenv('GRAD_CLIP', 0))
        if use_grad_clip:
            # 1: clip_by_value; 2: clip_by_norm; 3:clip_by_global_norm
            if use_grad_clip == 1:
                fluid.clip.set_gradient_clip(
                    clip=fluid.clip.GradientClipByValue(2.0))
            elif use_grad_clip == 2:
                fluid.clip.set_gradient_clip(
                    clip=fluid.clip.GradientClipByNorm(2.0))
            elif use_grad_clip == 3:
                fluid.clip.set_gradient_clip(
                    clip=fluid.clip.GradientClipByGlobalNorm(2.0))

115 116 117 118 119 120 121 122 123 124
        use_decay = int(os.getenv("DECAY", "0"))
        if use_decay:
            optimizer = fluid.optimizer.SGD(
                learning_rate=fluid.layers.exponential_decay(
                    learning_rate=LEARNING_RATE,
                    decay_steps=500,
                    decay_rate=0.969,
                    staircase=True))
        else:
            optimizer = fluid.optimizer.SGD(LEARNING_RATE)
T
tangwei12 已提交
125 126 127
        optimizer = fleet.distributed_optimizer(optimizer, strategy)
        optimizer.minimize(avg_cost)

128
    def run_pserver(self, args):
T
tangwei12 已提交
129 130 131
        fleet.init_server()
        fleet.run_server()

1
123malin 已提交
132 133 134 135 136
    def run_dataset_trainer(self, args):
        out = self.do_dataset_training(fleet)

    def run_pyreader_trainer(self, args):
        out = self.do_pyreader_training(fleet)
T
tangwei12 已提交
137

138
    def net(self, args, batch_size=4, lr=0.01):
T
tangwei12 已提交
139 140 141
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

1
123malin 已提交
142
    def do_dataset_training(self, fleet):
T
tangwei12 已提交
143
        raise NotImplementedError(
1
123malin 已提交
144 145 146 147 148
            "do_dataset_training should be implemented by child classes.")

    def do_pyreader_training(self, fleet):
        raise NotImplementedError(
            "do_pyreader_training should be implemented by child classes.")
T
tangwei12 已提交
149 150 151


class TestFleetBase(unittest.TestCase):
152 153 154 155 156
    """
        start_pserver,start_trainer : add start cmd to test
        run_cluster : using multi process to test distribute program
    """

T
tangwei12 已提交
157 158 159 160
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

    def setUp(self):
1
123malin 已提交
161 162
        self._mode = "sync"
        self._reader = "pyreader"
T
tangwei12 已提交
163 164 165
        self._trainers = 2
        self._pservers = 2
        self._port_set = set()
166 167 168 169 170 171 172 173 174

        global DIST_UT_PORT
        if DIST_UT_PORT == 0 and os.getenv("PADDLE_DIST_UT_PORT"):
            DIST_UT_PORT = int(os.getenv("PADDLE_DIST_UT_PORT"))

        if DIST_UT_PORT:
            print("set begin_port:", DIST_UT_PORT)
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                DIST_UT_PORT, DIST_UT_PORT + 1)
175 176 177
            self._tr_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                DIST_UT_PORT + 2, DIST_UT_PORT + 3)
            DIST_UT_PORT += 4
178 179 180
        else:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                self._find_free_port(), self._find_free_port())
181 182
            self._tr_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                self._find_free_port(), self._find_free_port())
183

T
tangwei12 已提交
184
        self._python_interp = sys.executable
185
        self._geo_sgd_need_push_nums = 5
C
Chengmo 已提交
186
        self._grad_clip_mode = 0
T
tangwei12 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
        self._setup_config()

    def _find_free_port(self):
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port

    def _start_pserver(self, cmd, required_envs):
        ps0_cmd, ps1_cmd = cmd.format(0), cmd.format(1)

205 206
        ps0_pipe = open(tempfile.gettempdir() + "/ps0_err.log", "wb+")
        ps1_pipe = open(tempfile.gettempdir() + "/ps1_err.log", "wb+")
T
tangwei12 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

        ps0_proc = subprocess.Popen(
            ps0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps0_pipe,
            env=required_envs)
        ps1_proc = subprocess.Popen(
            ps1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps1_pipe,
            env=required_envs)
        return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe

    def _start_trainer(self, cmd, required_envs):
        tr0_cmd, tr1_cmd = cmd.format(0), cmd.format(1)

223 224
        tr0_pipe = open(tempfile.gettempdir() + "/tr0_err.log", "wb+")
        tr1_pipe = open(tempfile.gettempdir() + "/tr1_err.log", "wb+")
T
tangwei12 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

        tr0_proc = subprocess.Popen(
            tr0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=tr0_pipe,
            env=required_envs)
        tr1_proc = subprocess.Popen(
            tr1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=tr1_pipe,
            env=required_envs)

        return tr0_proc, tr1_proc, tr0_pipe, tr1_pipe

    def _run_cluster(self, model, envs):
240
        env = {'GRAD_CLIP': str(self._grad_clip_mode)}
241
        python_path = self._python_interp
242 243
        gloo_path = tempfile.mkdtemp()

244 245 246
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            python_path += " -m coverage run --branch -p"
247
        env.update(envs)
T
tangwei12 已提交
248

249 250 251 252
        tr_cmd = "{0} {1} --role trainer --endpoints {2} --trainer_endpoints {3} --current_id {{}} --trainers {4} --mode {5} --geo_sgd_need_push_nums {6} --reader {7} --gloo_path {8}".format(
            python_path, model, self._ps_endpoints, self._tr_endpoints,
            self._trainers, self._mode, self._geo_sgd_need_push_nums,
            self._reader, gloo_path)
T
tangwei12 已提交
253

254 255 256 257
        ps_cmd = "{0} {1} --role pserver --endpoints {2} --trainer_endpoints {3} --current_id {{}} --trainers {4} --mode {5} --geo_sgd_need_push_nums {6} --reader {7} --gloo_path {8}".format(
            python_path, model, self._ps_endpoints, self._tr_endpoints,
            self._trainers, self._mode, self._geo_sgd_need_push_nums,
            self._reader, gloo_path)
258

T
tangwei12 已提交
259 260 261 262 263 264 265 266 267 268
        # Run dist train to compare with local results
        ps0, ps1, ps0_pipe, ps1_pipe = self._start_pserver(ps_cmd, env)
        tr0, tr1, tr0_pipe, tr1_pipe = self._start_trainer(tr_cmd, env)

        # Wait until trainer process terminate
        while True:
            stat0 = tr0.poll()
            time.sleep(0.1)
            if stat0 is not None:
                break
269

T
tangwei12 已提交
270 271 272 273 274 275 276 277 278
        while True:
            stat1 = tr1.poll()
            time.sleep(0.1)
            if stat1 is not None:
                break

        tr0_out, tr0_err = tr0.communicate()
        tr1_out, tr1_err = tr1.communicate()

279 280 281 282 283 284
        tr0_ret = tr0.returncode
        tr1_ret = tr0.returncode

        self.assertEqual(tr0_ret, 0, "something wrong in tr0, please check")
        self.assertEqual(tr1_ret, 0, "something wrong in tr1, please check")

T
tangwei12 已提交
285 286 287 288 289 290 291 292 293
        # close trainer file
        tr0_pipe.close()
        tr1_pipe.close()
        ps0_pipe.close()
        ps1_pipe.close()

        ps0.terminate()
        ps1.terminate()

294
        shutil.rmtree(gloo_path)
T
tangwei12 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
        return 0, 0

    def check_with_place(self,
                         model_file,
                         delta=1e-3,
                         check_error_log=False,
                         need_envs={}):
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_rpc_deadline": "5000",  # 5sec to fail fast
            "http_proxy": ""
        }

        required_envs.update(need_envs)

        if check_error_log:
            required_envs["GLOG_v"] = "3"
            required_envs["GLOG_logtostderr"] = "1"

        tr0_losses, tr1_losses = self._run_cluster(model_file, required_envs)


def runtime_main(test_class):
    parser = argparse.ArgumentParser(description='Run Fleet test.')
    parser.add_argument(
        '--role', type=str, required=True, choices=['pserver', 'trainer'])
    parser.add_argument('--endpoints', type=str, required=False, default="")
324 325 326
    parser.add_argument(
        '--trainer_endpoints', type=str, required=False, default="")
    parser.add_argument('--gloo_path', type=str, required=False, default="")
T
tangwei12 已提交
327 328
    parser.add_argument('--current_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
1
123malin 已提交
329
    parser.add_argument('--mode', type=str, required=False, default='geo')
330 331
    parser.add_argument(
        '--geo_sgd_need_push_nums', type=int, required=False, default=2)
1
123malin 已提交
332
    parser.add_argument('--reader', type=str, required=False, default='dataset')
T
tangwei12 已提交
333 334 335
    args = parser.parse_args()

    model = test_class()
336 337 338 339 340 341 342
    role = model.build_role(args)
    fleet.init(role)
    strategy = model.build_strategy(args)
    avg_cost = model.net(args)
    model.build_optimizer(avg_cost, strategy)
    fleet_util._set_strategy(strategy)
    fleet_util._set_role_maker(role)
T
tangwei12 已提交
343 344 345
    if args.role == "pserver":
        model.run_pserver(args)
    else:
1
123malin 已提交
346 347 348 349
        if args.reader == "dataset":
            model.run_dataset_trainer(args)
        else:
            model.run_pyreader_trainer(args)