test_dist_fleet_base.py 11.3 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
16 17 18
"""
    high level unit test for distribute fleet.
"""
T
tangwei12 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
import argparse
import os
import pickle
import subprocess
import sys
import time
import traceback
import math
import collections
import socket
from contextlib import closing

import six
import unittest
import numpy as np
34
import tempfile
T
tangwei12 已提交
35 36 37 38 39

import paddle.fluid as fluid
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
from paddle.fluid.transpiler.distribute_transpiler import DistributeTranspilerConfig
40
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory
T
tangwei12 已提交
41

C
Chengmo 已提交
42 43
__all__ = ['FleetDistRunnerBase', 'TestFleetBase', 'runtime_main']

T
tangwei12 已提交
44 45
RUN_STEP = 5
LEARNING_RATE = 0.01
46
DIST_UT_PORT = 0
T
tangwei12 已提交
47 48 49


class FleetDistRunnerBase(object):
50 51 52 53 54 55
    """
        run_pserver,run_trainer : after init role, using transpiler split program
        net : implment by child class, the network of model
        do training : exe run program
    """

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    def build_role(self, args):
        if args.role.upper() == "PSERVER":
            role = role_maker.UserDefinedRoleMaker(
                current_id=args.current_id,
                role=role_maker.Role.SERVER,
                worker_num=args.trainers,
                server_endpoints=args.endpoints.split(","))
        else:
            role = role_maker.UserDefinedRoleMaker(
                current_id=args.current_id,
                role=role_maker.Role.WORKER,
                worker_num=args.trainers,
                server_endpoints=args.endpoints.split(","))
        return role

    def build_strategy(self, args):
1
123malin 已提交
72 73 74 75 76 77 78 79 80 81
        self.strategy = None
        if args.mode == "async":
            self.strategy = StrategyFactory.create_async_strategy()
        elif args.mode == "sync":
            self.strategy = StrategyFactory.create_sync_strategy()
        elif args.mode == "half_async":
            self.strategy = StrategyFactory.create_half_async_strategy()
        elif args.mode == "geo":
            self.strategy = StrategyFactory.create_geo_strategy(
                args.geo_sgd_need_push_nums)
82 83 84 85 86 87 88 89 90 91 92
        self.dump_param = os.getenv("dump_param", "").split(",")
        self.dump_fields = os.getenv("dump_fields", "").split(",")
        self.dump_fields_path = os.getenv("dump_fields_path", "")
        debug = int(os.getenv("Debug", "0"))
        if debug:
            self.strategy.set_debug_opt({
                "dump_param": self.dump_param,
                "dump_fields": self.dump_fields,
                "dump_fields_path": self.dump_fields_path
            })

1
123malin 已提交
93 94
        return self.strategy

95
    def build_optimizer(self, avg_cost, strategy):
C
Chengmo 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108
        use_grad_clip = int(os.getenv('GRAD_CLIP', 0))
        if use_grad_clip:
            # 1: clip_by_value; 2: clip_by_norm; 3:clip_by_global_norm
            if use_grad_clip == 1:
                fluid.clip.set_gradient_clip(
                    clip=fluid.clip.GradientClipByValue(2.0))
            elif use_grad_clip == 2:
                fluid.clip.set_gradient_clip(
                    clip=fluid.clip.GradientClipByNorm(2.0))
            elif use_grad_clip == 3:
                fluid.clip.set_gradient_clip(
                    clip=fluid.clip.GradientClipByGlobalNorm(2.0))

T
tangwei12 已提交
109 110 111 112
        optimizer = fluid.optimizer.SGD(LEARNING_RATE)
        optimizer = fleet.distributed_optimizer(optimizer, strategy)
        optimizer.minimize(avg_cost)

113 114 115
    def run_pserver(self, args):
        fleet.init(self.build_role(args))
        strategy = self.build_strategy(args)
116
        avg_cost = self.net(args)
117 118
        self.build_optimizer(avg_cost, strategy)

T
tangwei12 已提交
119 120 121
        fleet.init_server()
        fleet.run_server()

1
123malin 已提交
122
    def run_dataset_trainer(self, args):
123 124
        fleet.init(self.build_role(args))
        strategy = self.build_strategy(args)
125
        avg_cost = self.net(args)
126
        self.build_optimizer(avg_cost, strategy)
1
123malin 已提交
127 128 129
        out = self.do_dataset_training(fleet)

    def run_pyreader_trainer(self, args):
130 131
        fleet.init(self.build_role(args))
        strategy = self.build_strategy(args)
132
        avg_cost = self.net(args)
133
        self.build_optimizer(avg_cost, strategy)
1
123malin 已提交
134
        out = self.do_pyreader_training(fleet)
T
tangwei12 已提交
135

136
    def net(self, args, batch_size=4, lr=0.01):
T
tangwei12 已提交
137 138 139
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

1
123malin 已提交
140
    def do_dataset_training(self, fleet):
T
tangwei12 已提交
141
        raise NotImplementedError(
1
123malin 已提交
142 143 144 145 146
            "do_dataset_training should be implemented by child classes.")

    def do_pyreader_training(self, fleet):
        raise NotImplementedError(
            "do_pyreader_training should be implemented by child classes.")
T
tangwei12 已提交
147 148 149


class TestFleetBase(unittest.TestCase):
150 151 152 153 154
    """
        start_pserver,start_trainer : add start cmd to test
        run_cluster : using multi process to test distribute program
    """

T
tangwei12 已提交
155 156 157 158
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

    def setUp(self):
1
123malin 已提交
159 160
        self._mode = "sync"
        self._reader = "pyreader"
T
tangwei12 已提交
161 162 163
        self._trainers = 2
        self._pservers = 2
        self._port_set = set()
164 165 166 167 168 169 170 171 172 173 174 175 176 177

        global DIST_UT_PORT
        if DIST_UT_PORT == 0 and os.getenv("PADDLE_DIST_UT_PORT"):
            DIST_UT_PORT = int(os.getenv("PADDLE_DIST_UT_PORT"))

        if DIST_UT_PORT:
            print("set begin_port:", DIST_UT_PORT)
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                DIST_UT_PORT, DIST_UT_PORT + 1)
            DIST_UT_PORT += 2
        else:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                self._find_free_port(), self._find_free_port())

T
tangwei12 已提交
178
        self._python_interp = sys.executable
179
        self._geo_sgd_need_push_nums = 5
C
Chengmo 已提交
180
        self._grad_clip_mode = 0
T
tangwei12 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
        self._setup_config()

    def _find_free_port(self):
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port

    def _start_pserver(self, cmd, required_envs):
        ps0_cmd, ps1_cmd = cmd.format(0), cmd.format(1)

199 200
        ps0_pipe = open(tempfile.gettempdir() + "/ps0_err.log", "wb+")
        ps1_pipe = open(tempfile.gettempdir() + "/ps1_err.log", "wb+")
T
tangwei12 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

        ps0_proc = subprocess.Popen(
            ps0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps0_pipe,
            env=required_envs)
        ps1_proc = subprocess.Popen(
            ps1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps1_pipe,
            env=required_envs)
        return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe

    def _start_trainer(self, cmd, required_envs):
        tr0_cmd, tr1_cmd = cmd.format(0), cmd.format(1)

217 218
        tr0_pipe = open(tempfile.gettempdir() + "/tr0_err.log", "wb+")
        tr1_pipe = open(tempfile.gettempdir() + "/tr1_err.log", "wb+")
T
tangwei12 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

        tr0_proc = subprocess.Popen(
            tr0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=tr0_pipe,
            env=required_envs)
        tr1_proc = subprocess.Popen(
            tr1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=tr1_pipe,
            env=required_envs)

        return tr0_proc, tr1_proc, tr0_pipe, tr1_pipe

    def _run_cluster(self, model, envs):
234
        env = {'GRAD_CLIP': str(self._grad_clip_mode)}
235 236
        env.update(envs)

237 238 239 240 241
        python_path = self._python_interp

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            python_path += " -m coverage run --branch -p"
T
tangwei12 已提交
242

1
123malin 已提交
243 244 245
        tr_cmd = "{0} {1} --role trainer --endpoints {2} --current_id {{}} --trainers {3} --mode {4} --geo_sgd_need_push_nums {5} --reader {6}".format(
            python_path, model, self._ps_endpoints, self._trainers, self._mode,
            self._geo_sgd_need_push_nums, self._reader)
T
tangwei12 已提交
246

1
123malin 已提交
247 248 249
        ps_cmd = "{0} {1} --role pserver --endpoints {2} --current_id {{}} --trainers {3} --mode {4} --geo_sgd_need_push_nums {5} --reader {6}".format(
            python_path, model, self._ps_endpoints, self._trainers, self._mode,
            self._geo_sgd_need_push_nums, self._reader)
250

T
tangwei12 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
        # Run dist train to compare with local results
        ps0, ps1, ps0_pipe, ps1_pipe = self._start_pserver(ps_cmd, env)
        tr0, tr1, tr0_pipe, tr1_pipe = self._start_trainer(tr_cmd, env)

        # Wait until trainer process terminate
        while True:
            stat0 = tr0.poll()
            time.sleep(0.1)
            if stat0 is not None:
                break
        while True:
            stat1 = tr1.poll()
            time.sleep(0.1)
            if stat1 is not None:
                break

        tr0_out, tr0_err = tr0.communicate()
        tr1_out, tr1_err = tr1.communicate()

        # close trainer file
        tr0_pipe.close()
        tr1_pipe.close()
        ps0_pipe.close()
        ps1_pipe.close()

        ps0.terminate()
        ps1.terminate()

        return 0, 0

    def check_with_place(self,
                         model_file,
                         delta=1e-3,
                         check_error_log=False,
                         need_envs={}):
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_rpc_deadline": "5000",  # 5sec to fail fast
            "http_proxy": ""
        }

        required_envs.update(need_envs)

        if check_error_log:
            required_envs["GLOG_v"] = "3"
            required_envs["GLOG_logtostderr"] = "1"

        tr0_losses, tr1_losses = self._run_cluster(model_file, required_envs)


def runtime_main(test_class):
    parser = argparse.ArgumentParser(description='Run Fleet test.')
    parser.add_argument(
        '--role', type=str, required=True, choices=['pserver', 'trainer'])
    parser.add_argument('--endpoints', type=str, required=False, default="")
    parser.add_argument('--current_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
1
123malin 已提交
310
    parser.add_argument('--mode', type=str, required=False, default='geo')
311 312
    parser.add_argument(
        '--geo_sgd_need_push_nums', type=int, required=False, default=2)
1
123malin 已提交
313
    parser.add_argument('--reader', type=str, required=False, default='dataset')
T
tangwei12 已提交
314 315 316 317 318 319
    args = parser.parse_args()

    model = test_class()
    if args.role == "pserver":
        model.run_pserver(args)
    else:
1
123malin 已提交
320 321 322 323
        if args.reader == "dataset":
            model.run_dataset_trainer(args)
        else:
            model.run_pyreader_trainer(args)