multi_devices_graph_builder.cc 11.9 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
C
chengduoZH 已提交
15 16
#include <utility>
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
17
#include "paddle/fluid/framework/details/computation_op_handle.h"
C
chengduoZH 已提交
18
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yu Yang 已提交
19
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
T
wip  
typhoonzero 已提交
20
#include "paddle/fluid/framework/details/send_op_handle.h"
Y
Yu Yang 已提交
21
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
22 23 24 25

#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h"
#endif
Y
Yu Yang 已提交
26

Y
Yu Yang 已提交
27 28 29
#include <string>
#include <vector>

Y
Yu Yang 已提交
30 31 32
namespace paddle {
namespace framework {
namespace details {
Y
Yu Yang 已提交
33 34

#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
35 36 37 38
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
C
chengduoZH 已提交
39
    const std::vector<Scope *> &local_scopes,
40
    platform::NCCLContextMap *nccl_ctxs, bool use_default_grad_scale)
Y
Yu Yang 已提交
41 42 43
    : loss_var_name_(loss_var_name),
      places_(places),
      local_scopes_(local_scopes),
44
      nccl_ctxs_(nccl_ctxs) {
Y
Yu Yang 已提交
45 46 47 48 49
#else
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
50
    const std::vector<Scope *> &local_scopes, bool use_default_grad_scale)
Y
Yu Yang 已提交
51 52
    : loss_var_name_(loss_var_name),
      places_(places),
53
      local_scopes_(local_scopes) {
Y
Yu Yang 已提交
54
#endif
Y
Yu Yang 已提交
55 56 57
  for (auto &p : params) {
    grad_names_.insert(GradVarName(p));
  }
Y
Yu Yang 已提交
58
  use_default_grad_scale_ = use_default_grad_scale;
Y
Yu Yang 已提交
59 60
}

Y
Yu Yang 已提交
61 62
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(SSAGraph *result,
                                                const OpDesc &op,
Y
Yu Yang 已提交
63 64
                                                size_t place_id) const {
  auto p = places_[place_id];
T
wip  
typhoonzero 已提交
65
  auto *op_handle = result->ops_.back().get();
X
Xin Pan 已提交
66 67
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
T
wip  
typhoonzero 已提交
68

Y
Yu Yang 已提交
69 70 71
  for (auto &each_var_name : op.InputArgumentNames()) {
    VarHandle *var =
        CreateOrGetLatestVarHandle(result, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
72 73 74
    op_handle->AddInput(var);
  }

Y
Yu Yang 已提交
75 76
  for (auto &each_var_name : op.OutputArgumentNames()) {
    CreateOpOutput(result, op_handle, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
77 78 79
  }
}

T
typhoonzero 已提交
80 81 82 83 84 85
bool MultiDevSSAGraphBuilder::IsDistTrainOp(const OpDesc &op,
                                            OpDesc *send_op) const {
  if (send_op == nullptr) {
    return false;
  }

Y
Yu Yang 已提交
86 87 88 89 90
  /**
   * Check any of opvars contains `.block` and in sendvars
   */
  auto checker = [](const std::vector<std::string> &opvars,
                    const std::vector<std::string> &sendvars) -> bool {
T
typhoonzero 已提交
91 92 93
    for (auto &var : opvars) {
      if (var.find(".block") != std::string::npos &&
          std::find(sendvars.begin(), sendvars.end(), var) != sendvars.end()) {
Y
Yu Yang 已提交
94
        return true;
T
typhoonzero 已提交
95 96
      }
    }
Y
Yu Yang 已提交
97
    return false;
T
typhoonzero 已提交
98 99 100 101 102 103 104 105 106 107
  };

  if (op.Type() == "split") {
    return checker(op.OutputArgumentNames(), send_op->InputArgumentNames());
  } else if (op.Type() == "concat") {
    return checker(op.InputArgumentNames(), send_op->OutputArgumentNames());
  }
  return false;
}

Y
Yu Yang 已提交
108 109
std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
    const ProgramDesc &program) const {
C
fix ci  
chengduoZH 已提交
110 111 112 113
  std::unordered_map<std::string, proto::VarType::Type> var_types;
  for (auto *var : program.Block(0).AllVars()) {
    var_types[var->Name()] = var->GetType();
  }
C
chengduoZH 已提交
114

Y
Yu Yang 已提交
115
  auto graph = new SSAGraph();
Y
Yu Yang 已提交
116
  SSAGraph &result = *graph;
C
chengduoZH 已提交
117
  std::unordered_set<std::string> og_has_been_broadcast;
Y
Yu Yang 已提交
118 119 120 121 122

  // We cannot invoke resize. It is a bug of GCC 4.8
  result.vars_ = std::vector<
      std::unordered_map<std::string, std::vector<std::unique_ptr<VarHandle>>>>(
      places_.size());
Y
Yu Yang 已提交
123

T
typhoonzero 已提交
124
  // Find "send" op first for split is in front of send.
Y
Yu Yang 已提交
125
  OpDesc *send_op = GetSendOpDesc(program);
T
typhoonzero 已提交
126

Y
Yu Yang 已提交
127 128
  bool is_forwarding = true;
  for (auto *op : program.Block(0).AllOps()) {
Y
Yu Yang 已提交
129 130 131 132
    if (op->Type() == "send") {
      // append send op if program is distributed trainer main program.
      // always use the first device
      CreateSendOp(&result, *op);
T
typhoonzero 已提交
133 134
    } else if (IsDistTrainOp(*op, send_op)) {
      CreateComputationalOps(&result, *op, 1);
Y
Yu Yang 已提交
135
    } else if (IsScaleLossOp(*op)) {
Y
Yu Yang 已提交
136 137
      // user can customize loss@grad if not use_default_grad_scale_
      if (use_default_grad_scale_) {
Y
Yu Yang 已提交
138 139
        CreateScaleLossGradOp(&result);
      }
Y
Yu Yang 已提交
140
      is_forwarding = false;
Y
Yu Yang 已提交
141
    } else {
C
chengduoZH 已提交
142
      CreateComputationalOps(&result, *op, places_.size());
C
chengduoZH 已提交
143
      if (!is_forwarding && places_.size() > 1) {
Y
Yu Yang 已提交
144
        // Currently, we assume that once gradient is generated, it can be
Y
Yu Yang 已提交
145
        // broadcast, and each gradient is only broadcast once.
Y
Yu Yang 已提交
146 147
        for (auto &og : op->OutputArgumentNames()) {
          if (IsParameterGradientOnce(og, &og_has_been_broadcast)) {
C
fix ci  
chengduoZH 已提交
148
            if (IsSparseGradient(var_types, og)) {
C
chengduoZH 已提交
149 150
              CreateReduceOp(&result, og, 0);
              CreateBroadcastOp(&result, og, 0);
151 152
            } else {
              InsertNCCLAllReduceOp(&result, og);
C
chengduoZH 已提交
153
            }
Y
Yu Yang 已提交
154 155 156 157 158 159 160 161 162 163 164
          }
        }
      }
    }
  }

  /*
    Dependency graph has been constructed. However, there are still data
    harzaeds need to be handled.
   */
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
165

Y
Yu Yang 已提交
166 167 168 169 170
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);

Y
Yu Yang 已提交
171 172 173 174 175 176
  if (VLOG_IS_ON(10)) {
    std::ostringstream sout;
    PrintGraphviz(*graph, sout);
    VLOG(10) << sout.str();
  }

Y
Yu Yang 已提交
177
  return std::unique_ptr<SSAGraph>(graph);
Y
Yu Yang 已提交
178 179
}

C
fix ci  
chengduoZH 已提交
180 181 182 183 184 185 186 187
bool MultiDevSSAGraphBuilder::IsSparseGradient(
    const std::unordered_map<std::string, proto::VarType::Type> &var_types,
    const std::string &og) const {
  PADDLE_ENFORCE(var_types.count(og) != 0);
  if (var_types.at(og) == proto::VarType::SELECTED_ROWS) {
    return true;
  }
  return false;
188 189
}

C
chengduoZH 已提交
190 191
void MultiDevSSAGraphBuilder::CreateBroadcastOp(SSAGraph *result,
                                                const std::string &p_name,
C
chengduoZH 已提交
192
                                                size_t src_dev_id) const {
C
chengduoZH 已提交
193 194 195 196 197 198 199
#ifdef PADDLE_WITH_CUDA
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_, nccl_ctxs_);
#else
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_);
#endif

  result->ops_.emplace_back(op_handle);
C
chengduoZH 已提交
200
  auto *in = result->vars_.at(src_dev_id).at(p_name).back().get();
C
chengduoZH 已提交
201 202 203
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
C
chengduoZH 已提交
204
    auto &vars = result->vars_.at(i).at(p_name);
C
chengduoZH 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    auto &p = places_[i];
    auto *out_var = new VarHandle(vars.size(), i, p_name, p);
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
#ifndef ADDLE_WITH_CUDA
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
#endif
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOp(SSAGraph *result,
                                                    const OpDesc &op,
                                                    int dev_id) const {
  result->ops_.emplace_back(
      new ComputationOpHandle(op, local_scopes_[dev_id], places_[dev_id]));
  CreateOpHandleIOs(result, op, dev_id);
}

Y
Yu Yang 已提交
224 225 226 227 228 229 230 231 232
OpDesc *MultiDevSSAGraphBuilder::GetSendOpDesc(
    const ProgramDesc &program) const {
  for (auto *op : program.Block(0).AllOps()) {
    if (op->Type() == "send") {
      return op;
    }
  }
  return nullptr;
}
Y
Yu Yang 已提交
233 234 235 236 237 238 239 240 241 242
void MultiDevSSAGraphBuilder::InsertNCCLAllReduceOp(
    SSAGraph *result, const std::string &og) const {
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new NCCLAllReduceOpHandle(local_scopes_, places_, *nccl_ctxs_));
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    auto &vars = result->vars_[i][og];
Y
Yu Yang 已提交
243 244
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
Y
Yu Yang 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
    op_handle->AddInput(prev_grad.get());

    auto var = new VarHandle(vars.size() - 1, i, og, p);
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
#else
  PADDLE_ENFORCE("Not implemented");
#endif
}

bool MultiDevSSAGraphBuilder::IsParameterGradientOnce(
    const std::string &og,
    std::unordered_set<std::string> *og_has_been_broadcast) const {
  bool is_pg_once =
      grad_names_.count(og) != 0 && og_has_been_broadcast->count(og) == 0;
  if (is_pg_once) {
    // Insert NCCL AllReduce Op
    og_has_been_broadcast->insert(og);
  }
  return is_pg_once;
}

void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(SSAGraph *result) const {
  for (size_t i = 0; i < places_.size(); ++i) {
// Insert ScaleCost OpHandle
#ifdef PADDLE_WITH_CUDA
    auto *communication_dev_ctx = nccl_ctxs_->DevCtx(places_[i]);
#else
    auto *communication_dev_ctx =
        platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
#endif

    auto *op_handle =
        new ScaleLossGradOpHandle(local_scopes_.size(), local_scopes_[i],
                                  places_[i], communication_dev_ctx);
    result->ops_.emplace_back(op_handle);

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

    CreateOpOutput(result, op_handle, GradVarName(loss_var_name_), places_[i],
                   i);
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOps(SSAGraph *result,
T
typhoonzero 已提交
295 296 297
                                                     const OpDesc &op,
                                                     size_t num_places) const {
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
298 299 300
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
    result->ops_.emplace_back(new ComputationOpHandle(op, s, p));
Y
Yu Yang 已提交
301
    CreateOpHandleIOs(result, op, scope_idx);
Y
Yu Yang 已提交
302 303 304
  }
}

C
chengduoZH 已提交
305 306 307
VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(SSAGraph *result,
                                                   const std::string &og,
                                                   int dst_dev_id) const {
C
chengduoZH 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new ReduceOpHandle(local_scopes_, places_, nccl_ctxs_));
#else
  result->ops_.emplace_back(new ReduceOpHandle(local_scopes_, places_));
#endif
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &vars = result->vars_[i][og];
#ifndef PADDLE_WITH_CUDA
    auto &p = places_[i];
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
#endif
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
    op_handle->AddInput(prev_grad.get());
  }
  auto &vars = result->vars_[dst_dev_id][og];
  auto var =
      new VarHandle(vars.size() - 1, dst_dev_id, og, places_[dst_dev_id]);
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

Y
Yu Yang 已提交
335 336 337 338 339 340 341 342
void MultiDevSSAGraphBuilder::CreateSendOp(SSAGraph *result,
                                           const OpDesc &op) const {
  auto &p = places_[0];
  auto *s = local_scopes_[0];
  // FIXME(wuyi): send op always copy from GPU 0
  result->ops_.emplace_back(new SendOpHandle(op, s, p));
  // Create inputs for output on original place and no ssa output
  // is created for send op.
Y
Yu Yang 已提交
343
  CreateOpHandleIOs(result, op, 0);
Y
Yu Yang 已提交
344 345 346 347 348 349 350
}

bool MultiDevSSAGraphBuilder::IsScaleLossOp(const OpDesc &op) const {
  // FIXME(yy): Do not hard code like this
  return op.OutputArgumentNames().size() == 1 &&
         op.OutputArgumentNames()[0] == GradVarName(loss_var_name_);
}
C
chengduoZH 已提交
351

Y
Yu Yang 已提交
352 353 354
}  // namespace details
}  // namespace framework
}  // namespace paddle