sequence_pool_op.cc 6.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/sequence_ops/sequence_pool_op.h"
16
#include <memory>
17
#include <string>
18 19 20 21

namespace paddle {
namespace operators {

22
class SequencePoolOp : public framework::OperatorWithKernel {
23 24 25
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
  void InferShape(framework::InferShapeContext* ctx) const override {
27 28 29 30
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "Input(X) of SequencePoolOp should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output(Out) of SequencePoolOp should not be null.");
Q
Qiao Longfei 已提交
31
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
32
    if (ctx->Attrs().Get<std::string>("pooltype") == "MAX") {
33 34 35
      PADDLE_ENFORCE_EQ(
          ctx->HasOutput("MaxIndex"), true,
          "Output(MaxIndex) of SequencePoolOp should not be null.");
36 37
      ctx->SetOutputDim("MaxIndex", ctx->GetInputDim("X"));
    }
38 39 40
  }
};

41
class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker {
42
 public:
Y
Yu Yang 已提交
43
  void Make() override {
44
    AddInput("X", "(LoDTensor) The variable-length input of SequencePoolOp");
L
Luo Tao 已提交
45
    AddOutput("Out",
46
              "(Tensor) The output of SequencePoolOp does not contain LoD "
L
Luo Tao 已提交
47
              "infomation.");
48
    AddOutput("MaxIndex",
D
dangqingqing 已提交
49 50
              "(Tensor<int>) This tensor is used for the sequence max-pooling "
              "to record the max indexes.")
51
        .AsIntermediate();
52 53 54 55
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
D
dzhwinter 已提交
56 57
    AddAttr<std::string>(
        "pooltype",
L
Luo Tao 已提交
58
        "(string, default 'AVERAGE') the pooling pooltype of SequencePoolOp.")
59 60
        .SetDefault("AVERAGE")
        .InEnum({"AVERAGE", "SUM", "SQRT", "LAST", "FIRST", "MAX"});
61 62 63
    AddAttr<float>("pad_value",
                   "(float, default 0.0) The value to pad for empty sequence.")
        .SetDefault(0.0);
64
    AddComment(R"DOC(
65
Sequence Pool Operator.
66

67 68
The SequencePoolOp pools features of all time-steps of each instance.
It supports six pooling types:
69 70 71
1. AVERAGE: $$Out[i] = \frac{\sum_i X_i}{N}$$
2. SUM:     $$Out[i] = \sum_jX_{ij}$$
3. SQRT:    $$Out[i] = \frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}$$
72 73
4. LAST:    Out[i] = last instance in i-th sequence X[i]
5. FIRST:   Out[i] = first instance in i-th sequence X[i]
74
6. MAX:     $$Out[i] = max(X_i)$$
75

76 77
and for the empty sequence Out[i] = attr(pad_value).

78 79 80
The following example explains how this works:
For a mini-batch of 3 variable-length sentences,
containing 2, 3, and 2 time-steps:
Q
Qiao Longfei 已提交
81

82 83 84
Assume X is a [7,M,N] LoDTensor, and X->lod()[0] = [0, 2, 5, 7], 7=2+3+2.
Besides, for the sake of simplicity, we assume M=1 and N=1,
and the value of X = [[1, 3], [2, 4, 6], [5, 1]].
L
Luo Tao 已提交
85

86 87
Thus, Out is a [3,1,1] Tensor without LoD infomation.
And for different pooltype, the value of Out is as follows:
L
Luo Tao 已提交
88

89 90 91
- AVERAGE: [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
- SUM: [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
- SQRT: [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
92
           6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
93 94 95 96
- MAX: [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
- LAST: [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
- FIRST: [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

97 98 99 100
    )DOC");
  }
};

101
class SequencePoolGradOp : public framework::OperatorWithKernel {
102 103 104
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

105
  void InferShape(framework::InferShapeContext* ctx) const override {
106 107 108 109
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
                      "Gradient of Out should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "The input X should not be null.");
Q
Qiao Longfei 已提交
110 111
    auto og_dims = ctx->GetInputDim(framework::GradVarName("Out"));
    auto x_dims = ctx->GetInputDim("X");
112 113
    PADDLE_ENFORCE_EQ(og_dims.size(), x_dims.size(),
                      "The rank of output grad must equal to Input(X).");
114
    for (int64_t i = 1; i < og_dims.size(); ++i) {
115 116
      PADDLE_ENFORCE_EQ(og_dims[i], x_dims[i], "The dimension mismatch.");
    }
117 118 119

    ctx->ShareDim("X", /*->*/ framework::GradVarName("X"));
    ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
120
  }
121 122

 protected:
123
  framework::OpKernelType GetExpectedKernelType(
124
      const framework::ExecutionContext& ctx) const override {
125 126 127
    return framework::OpKernelType(
        ctx.Input<Tensor>(framework::GradVarName("Out"))->type(),
        ctx.device_context());
128
  }
129 130
};

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
class SequencePoolGradOpMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op_desc_ptr = new framework::OpDesc();
    op_desc_ptr->SetType("sequence_pool_grad");
    op_desc_ptr->SetInput("X", Input("X"));
    if (boost::get<std::string>(GetAttr("pooltype")) == "MAX") {
      op_desc_ptr->SetInput("MaxIndex", Output("MaxIndex"));
    }
    op_desc_ptr->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op_desc_ptr->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op_desc_ptr->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDesc>(op_desc_ptr);
  }
};

150 151 152
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(
    SequencePoolGradOpNoNeedBufferVarsInference, "X");

153 154 155 156
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
157 158
REGISTER_OPERATOR(sequence_pool, ops::SequencePoolOp, ops::SequencePoolOpMaker,
                  ops::SequencePoolGradOpMaker);
159 160
REGISTER_OPERATOR(sequence_pool_grad, ops::SequencePoolGradOp,
                  ops::SequencePoolGradOpNoNeedBufferVarsInference);
161
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
162 163
    sequence_pool,
    ops::SequencePoolKernel<paddle::platform::CPUDeviceContext, float>);
164
REGISTER_OP_CPU_KERNEL(
165
    sequence_pool_grad,
Q
QI JUN 已提交
166
    ops::SequencePoolGradKernel<paddle::platform::CPUDeviceContext, float>);