sequence_pool_op.cc 6.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/sequence_ops/sequence_pool_op.h"
16
#include <string>
17 18 19 20

namespace paddle {
namespace operators {

21
class SequencePoolOp : public framework::OperatorWithKernel {
22 23 24
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

25
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
26
    PADDLE_ENFORCE(ctx->HasInput("X"),
27
                   "Input(X) of SequencePoolOp should not be null.");
Q
Qiao Longfei 已提交
28
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
29
                   "Output(Out) of SequencePoolOp should not be null.");
Q
Qiao Longfei 已提交
30
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
31 32 33 34 35
    if (ctx->Attrs().Get<std::string>("pooltype") == "MAX") {
      PADDLE_ENFORCE(ctx->HasOutput("MaxIndex"),
                     "Output(MaxIndex) of SequencePoolOp should not be null.");
      ctx->SetOutputDim("MaxIndex", ctx->GetInputDim("X"));
    }
36 37 38
  }
};

39
class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker {
40
 public:
Y
Yu Yang 已提交
41
  void Make() override {
42
    AddInput("X", "(LoDTensor) The variable-length input of SequencePoolOp");
L
Luo Tao 已提交
43
    AddOutput("Out",
44
              "(Tensor) The output of SequencePoolOp does not contain LoD "
L
Luo Tao 已提交
45
              "infomation.");
46
    AddOutput("MaxIndex",
D
dangqingqing 已提交
47 48
              "(Tensor<int>) This tensor is used for the sequence max-pooling "
              "to record the max indexes.")
49
        .AsIntermediate();
50 51 52 53
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
D
dzhwinter 已提交
54 55
    AddAttr<std::string>(
        "pooltype",
L
Luo Tao 已提交
56
        "(string, default 'AVERAGE') the pooling pooltype of SequencePoolOp.")
57 58
        .SetDefault("AVERAGE")
        .InEnum({"AVERAGE", "SUM", "SQRT", "LAST", "FIRST", "MAX"});
59
    AddComment(R"DOC(
60
Sequence Pool Operator.
61

62 63
The SequencePoolOp pools features of all time-steps of each instance.
It supports six pooling types:
64 65 66
1. AVERAGE: $$Out[i] = \frac{\sum_i X_i}{N}$$
2. SUM:     $$Out[i] = \sum_jX_{ij}$$
3. SQRT:    $$Out[i] = \frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}$$
67 68
4. LAST:    Out[i] = last instance in i-th sequence X[i]
5. FIRST:   Out[i] = first instance in i-th sequence X[i]
69
6. MAX:     $$Out[i] = max(X_i)$$
70

71 72 73
The following example explains how this works:
For a mini-batch of 3 variable-length sentences,
containing 2, 3, and 2 time-steps:
Q
Qiao Longfei 已提交
74

75 76 77
Assume X is a [7,M,N] LoDTensor, and X->lod()[0] = [0, 2, 5, 7], 7=2+3+2.
Besides, for the sake of simplicity, we assume M=1 and N=1,
and the value of X = [[1, 3], [2, 4, 6], [5, 1]].
L
Luo Tao 已提交
78

79 80
Thus, Out is a [3,1,1] Tensor without LoD infomation.
And for different pooltype, the value of Out is as follows:
L
Luo Tao 已提交
81

82 83 84
- AVERAGE: [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
- SUM: [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
- SQRT: [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
85
           6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
86 87 88 89
- MAX: [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
- LAST: [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
- FIRST: [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

90 91 92 93
    )DOC");
  }
};

94
class SequencePoolGradOp : public framework::OperatorWithKernel {
95 96 97
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

98
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
99 100 101 102 103
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Gradient of Out should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("X"), "The input X should not be null.");
    auto og_dims = ctx->GetInputDim(framework::GradVarName("Out"));
    auto x_dims = ctx->GetInputDim("X");
104 105
    PADDLE_ENFORCE_EQ(og_dims.size(), x_dims.size(),
                      "The rank of output grad must equal to Input(X).");
106
    for (int64_t i = 1; i < og_dims.size(); ++i) {
107 108
      PADDLE_ENFORCE_EQ(og_dims[i], x_dims[i], "The dimension mismatch.");
    }
109 110 111

    ctx->ShareDim("X", /*->*/ framework::GradVarName("X"));
    ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
112
  }
113 114

 protected:
115
  framework::OpKernelType GetExpectedKernelType(
116
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
117 118
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   ctx.device_context());
119
  }
120 121
};

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
class SequencePoolGradOpMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op_desc_ptr = new framework::OpDesc();
    op_desc_ptr->SetType("sequence_pool_grad");
    op_desc_ptr->SetInput("X", Input("X"));
    if (boost::get<std::string>(GetAttr("pooltype")) == "MAX") {
      op_desc_ptr->SetInput("MaxIndex", Output("MaxIndex"));
    }
    op_desc_ptr->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op_desc_ptr->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op_desc_ptr->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDesc>(op_desc_ptr);
  }
};

141 142 143 144
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
145 146 147
REGISTER_OPERATOR(sequence_pool, ops::SequencePoolOp, ops::SequencePoolOpMaker,
                  ops::SequencePoolGradOpMaker);
REGISTER_OPERATOR(sequence_pool_grad, ops::SequencePoolGradOp);
148
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
149 150
    sequence_pool,
    ops::SequencePoolKernel<paddle::platform::CPUDeviceContext, float>);
151
REGISTER_OP_CPU_KERNEL(
152
    sequence_pool_grad,
Q
QI JUN 已提交
153
    ops::SequencePoolGradKernel<paddle::platform::CPUDeviceContext, float>);