test_complex_trace_layer.py 2.4 KB
Newer Older
L
Li Fuchen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
C
chentianyu03 已提交
17
import paddle
L
Li Fuchen 已提交
18
from numpy.random import random as rand
19
from paddle import complex as cpx
C
chentianyu03 已提交
20
from paddle import tensor
L
Li Fuchen 已提交
21 22 23 24 25 26
import paddle.fluid as fluid
import paddle.fluid.dygraph as dg


class TestComplexTraceLayer(unittest.TestCase):
    def setUp(self):
C
chentianyu03 已提交
27
        self._dtypes = ["float32", "float64"]
L
Li Fuchen 已提交
28 29 30 31
        self._places = [fluid.CPUPlace()]
        if fluid.core.is_compiled_with_cuda():
            self._places.append(fluid.CUDAPlace(0))

C
chentianyu03 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    def test_complex_api(self):
        for dtype in self._dtypes:
            input = rand([2, 20, 2, 3]).astype(dtype) + 1j * rand(
                [2, 20, 2, 3]).astype(dtype)
            for place in self._places:
                with dg.guard(place):
                    var_x = dg.to_variable(input)
                    result = cpx.trace(
                        var_x, offset=1, axis1=0, axis2=2).numpy()
                    target = np.trace(input, offset=1, axis1=0, axis2=2)
                    self.assertTrue(np.allclose(result, target))

    def test_basic_api(self):
        for dtype in self._dtypes:
            input = rand([2, 20, 2, 3]).astype(dtype) + 1j * rand(
                [2, 20, 2, 3]).astype(dtype)
            for place in self._places:
                with dg.guard(place):
                    var_x = paddle.Tensor(
                        value=input,
                        place=place,
                        persistable=False,
                        zero_copy=None,
                        stop_gradient=True)
                    result = tensor.trace(
                        var_x, offset=1, axis1=0, axis2=2).numpy()
                    target = np.trace(input, offset=1, axis1=0, axis2=2)
                    self.assertTrue(np.allclose(result, target))
L
Li Fuchen 已提交
60 61 62 63


if __name__ == '__main__':
    unittest.main()