# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle from numpy.random import random as rand from paddle import complex as cpx from paddle import tensor import paddle.fluid as fluid import paddle.fluid.dygraph as dg class TestComplexTraceLayer(unittest.TestCase): def setUp(self): self._dtypes = ["float32", "float64"] self._places = [fluid.CPUPlace()] if fluid.core.is_compiled_with_cuda(): self._places.append(fluid.CUDAPlace(0)) def test_complex_api(self): for dtype in self._dtypes: input = rand([2, 20, 2, 3]).astype(dtype) + 1j * rand( [2, 20, 2, 3]).astype(dtype) for place in self._places: with dg.guard(place): var_x = dg.to_variable(input) result = cpx.trace( var_x, offset=1, axis1=0, axis2=2).numpy() target = np.trace(input, offset=1, axis1=0, axis2=2) self.assertTrue(np.allclose(result, target)) def test_basic_api(self): for dtype in self._dtypes: input = rand([2, 20, 2, 3]).astype(dtype) + 1j * rand( [2, 20, 2, 3]).astype(dtype) for place in self._places: with dg.guard(place): var_x = paddle.Tensor( value=input, place=place, persistable=False, zero_copy=None, stop_gradient=True) result = tensor.trace( var_x, offset=1, axis1=0, axis2=2).numpy() target = np.trace(input, offset=1, axis1=0, axis2=2) self.assertTrue(np.allclose(result, target)) if __name__ == '__main__': unittest.main()