pool_mkldnn_op.cc 16.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/pool_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
17
#include "paddle/fluid/platform/mkldnn_reuse.h"
18 19 20 21

namespace paddle {
namespace operators {

22 23
using framework::DataLayout;
using mkldnn::memory;
24
using mkldnn::pooling_backward;
25 26 27 28 29
using mkldnn::pooling_forward;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
30

31 32
template <typename T>
class PoolingMKLDNNHandler
33 34
    : public platform::MKLDNNHandlerNoCachingT<T, mkldnn::pooling_forward,
                                               mkldnn::pooling_backward> {
35 36
 public:
  PoolingMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
                       const mkldnn::engine mkldnn_engine, const Tensor* input,
                       Tensor* output)
      : platform::MKLDNNHandlerNoCachingT<T, mkldnn::pooling_forward,
                                          mkldnn::pooling_backward>(
            mkldnn_engine, ctx.GetPlace()) {
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      platform::errors::InvalidArgument(
                          "Wrong layout set for Input tensor."));
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                      platform::errors::InvalidArgument(
                          "Wrong format set for Input tensor."));

    const std::string pooling_type = ctx.Attr<std::string>("pooling_type");

    std::vector<int> ksize_temp = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int64_t> ksize(begin(ksize_temp), end(ksize_temp));

    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

    const bool global_pooling = ctx.Attr<bool>("global_pooling");
    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");

    // Only 2D pooling is supported now
    PADDLE_ENFORCE_EQ(
        ksize.size(), 2,
        platform::errors::InvalidArgument(
            "The ksize must be 2D, i.e. 2D pooling, but received %dD.",
            ksize.size()));
    PADDLE_ENFORCE_EQ(
        pooling_type == "max" || pooling_type == "avg", true,
        platform::errors::InvalidArgument(
            "The pooling_type must be 'max' or 'avg', but received %s.",
            pooling_type));
    PADDLE_ENFORCE_EQ(
        input->dims().size(), 4,
        platform::errors::InvalidArgument(
            "Input dim must be with 4, i.e. NCHW, but received %d.",
            input->dims().size()));

    const auto input_dims = input->dims();
    framework::DDim data_dims =
        framework::slice_ddim(input_dims, 2, input_dims.size());

    if (global_pooling) {
      operators::UpdateKsize(&ksize, data_dims);
    }
88

89 90
    operators::UpdatePadding(&paddings, global_pooling, 0, padding_algorithm,
                             data_dims, strides, ksize);
91

92 93
    const auto src_tz = paddle::framework::vectorize(input->dims());
    const auto dst_tz = paddle::framework::vectorize(output->dims());
94

95
    const auto is_test = ctx.Attr<bool>("is_test");
96

97
    const auto dt = framework::ToMKLDNNDataType(input->type());
98

99
    const auto exclude_padding = ctx.Attr<bool>("exclusive");
100

101 102 103 104 105
    const auto src_md = mkldnn::memory::desc(src_tz, dt, input->format());
    /* create memory descriptor for pooling without specified format
     * ('any') which lets a primitive (pooling in this case) choose
     * the memory format preferred for best performance
     */
106

107 108
    const auto dst_md =
        platform::MKLDNNMemDesc(dst_tz, dt, MKLDNNMemoryFormat::any);
109

110
    auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
111

112
    const bool ceil_mode = ctx.Attr<bool>("ceil_mode");
113

114 115 116
    if (ceil_mode) {
      CorrectOutputSize(src_tz, dst_tz, ksize, paddings, strides,
                        mkldnn_paddings[1]);
117
    }
118 119 120 121 122 123 124 125 126 127 128 129

    ComputeAdaptivePoolParameters(ctx, src_tz, &ksize, &strides);

    this->AcquireForwardPrimitiveDescriptor(
        is_test ? mkldnn::prop_kind::forward_inference
                : mkldnn::prop_kind::forward_training,
        pooling_type == "max"
            ? mkldnn::algorithm::pooling_max
            : (exclude_padding
                   ? mkldnn::algorithm::pooling_avg_exclude_padding
                   : mkldnn::algorithm::pooling_avg_include_padding),
        src_md, dst_md, strides, ksize, mkldnn_paddings[0], mkldnn_paddings[1]);
130 131 132
  }

  PoolingMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
                       const mkldnn::engine mkldnn_engine, const Tensor* in_x,
                       const Tensor* out_grad, Tensor* in_x_grad)

      : platform::MKLDNNHandlerNoCachingT<T, mkldnn::pooling_forward,
                                          mkldnn::pooling_backward>(
            mkldnn_engine, ctx.GetPlace()) {
    PADDLE_ENFORCE_EQ(
        in_x->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument("Wrong layout set for Input tensor"));
    PADDLE_ENFORCE_NE(
        in_x->format(), MKLDNNMemoryFormat::undef,
        platform::errors::InvalidArgument("Wrong format set for Input tensor"));

    PADDLE_ENFORCE_EQ(out_grad->layout(), DataLayout::kMKLDNN,
                      platform::errors::InvalidArgument(
                          "Wrong layout set for Input output_grad tensor"));
    PADDLE_ENFORCE_NE(out_grad->format(), MKLDNNMemoryFormat::undef,
                      platform::errors::InvalidArgument(
                          "Wrong format set for Input output_grad tensor"));

    PADDLE_ENFORCE_EQ(
        ctx.Attr<bool>("is_test"), false,
        platform::errors::InvalidArgument(
            "is_test attribute should be set to False in training phase."));

    std::string pooling_type = ctx.Attr<std::string>("pooling_type");

    std::vector<int> ksize_temp = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int64_t> ksize(begin(ksize_temp), end(ksize_temp));

    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

    bool global_pooling = ctx.Attr<bool>("global_pooling");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");

    auto in_x_dims = in_x->dims();
    framework::DDim data_dims =
        framework::slice_ddim(in_x_dims, 2, in_x_dims.size());

    if (global_pooling) {
      operators::UpdateKsize(&ksize, data_dims);
    }
179

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    operators::UpdatePadding(&paddings, global_pooling, 0, padding_algorithm,
                             data_dims, strides, ksize);

    auto src_tz = paddle::framework::vectorize<int64_t>(in_x->dims());
    auto diff_src_tz = paddle::framework::vectorize<int64_t>(in_x_grad->dims());
    auto diff_dst_tz = paddle::framework::vectorize<int64_t>(out_grad->dims());

    const auto dt = framework::ToMKLDNNDataType(in_x->type());
    auto src_md = mkldnn::memory::desc(src_tz, dt, in_x->format());
    auto dst_md =
        mkldnn::memory::desc(diff_dst_tz, dt, MKLDNNMemoryFormat::any);
    auto diff_dst_md = mkldnn::memory::desc(
        diff_dst_tz, platform::MKLDNNGetDataType<T>(), out_grad->format());
    auto diff_src_md = mkldnn::memory::desc(
        diff_src_tz, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::any);

    auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
    const bool ceil_mode = ctx.Attr<bool>("ceil_mode");

    if (ceil_mode) {
      CorrectOutputSize(src_tz, diff_dst_tz, ksize, paddings, strides,
                        mkldnn_paddings[1]);
202
    }
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    ComputeAdaptivePoolParameters(ctx, diff_src_tz, &ksize, &strides);

    const auto exclude_padding = ctx.Attr<bool>("exclusive");

    this->AcquireForwardPrimitiveDescriptor(
        mkldnn::prop_kind::forward_training,
        pooling_type == "max"
            ? mkldnn::algorithm::pooling_max
            : (exclude_padding
                   ? mkldnn::algorithm::pooling_avg_exclude_padding
                   : mkldnn::algorithm::pooling_avg_include_padding),
        src_md, dst_md, strides, ksize, mkldnn_paddings[0], mkldnn_paddings[1]);

    this->AcquireBackwardPrimitiveDescriptor(
        pooling_type == "max"
            ? mkldnn::algorithm::pooling_max
            : (exclude_padding
                   ? mkldnn::algorithm::pooling_avg_exclude_padding
                   : mkldnn::algorithm::pooling_avg_include_padding),
        diff_src_md, diff_dst_md, strides, ksize, mkldnn_paddings[0],
        mkldnn_paddings[1]);
224 225
  }

226 227 228
  std::shared_ptr<mkldnn::memory> AcquireWorkspaceMemory(
      const platform::MKLDNNDeviceContext& dev_ctx,
      const std::string& unique_name) {
229
    mkldnn::memory::desc workspace_md = this->fwd_pd_->workspace_desc();
230
    // Pooling Workspace has to be passed to Grad op that
231 232
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
233 234 235
    std::string workspace_key =
        platform::CreateKey(dev_ctx, workspace_md.dims(),
                            workspace_md.data_type(), unique_name, "@wrk");
236
    auto mem_p = std::static_pointer_cast<mkldnn::memory>(
237
        dev_ctx.GetBlob(workspace_key));
238 239 240 241 242
    if (mem_p == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
      mem_p = std::static_pointer_cast<mkldnn::memory>(
243
          dev_ctx.GetBlob(workspace_key));
244 245
      if (mem_p == nullptr) {
        mem_p = std::make_shared<mkldnn::memory>(workspace_md, this->engine_);
246
        dev_ctx.SetBlob(workspace_key, mem_p);
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
      }
    }
    return mem_p;
  }

  static void ComputeAdaptivePoolParameters(
      const paddle::framework::ExecutionContext& ctx,
      const std::vector<int64_t>& src_tz, std::vector<int64_t>* ksize,
      std::vector<int64_t>* strides) {
    if (ctx.Attr<bool>("adaptive")) {
      // https://github.com/oneapi-src/oneDNN/tree/bkocot/adaptive-pooling/rfcs/20200818-adaptive-pooling
      auto IH = static_cast<double>(src_tz[src_tz.size() - 2]);
      auto IW = static_cast<double>(src_tz[src_tz.size() - 1]);
      auto OH = static_cast<double>(ksize->at(0));
      auto OW = static_cast<double>(ksize->at(1));

      strides->at(0) =
          static_cast<int64_t>(floor((IH * 2.0) / OH) - floor(IH / OH));
      strides->at(1) =
          static_cast<int64_t>(floor((IW * 2.0) / OW) - floor(IW / OW));
      ksize->at(0) =
          static_cast<int64_t>(ceil((IH * 2.0) / OH) - floor(IH / OH));
      ksize->at(1) =
          static_cast<int64_t>(ceil((IW * 2.0) / OW) - floor(IW / OW));
    }
  }

 private:
  static inline int ComputeCeiledOutput(int input_size, int kernel_size,
                                        int padding, int stride) {
    return (input_size - kernel_size + 2 * padding) / stride + 1;
  }

  static inline void CorrectOutputSize(
      const std::vector<int64_t>& src_tz, const std::vector<int64_t>& dst_tz,
      const std::vector<int64_t>& kernel_size,
      const std::vector<int64_t>& paddings, const std::vector<int64_t>& strides,
      std::vector<int64_t>& right_bot_padding) {  // NOLINT
    for (size_t i = 0; i < right_bot_padding.size(); i++) {
      int desired_size = ComputeCeiledOutput(src_tz[i + 2], kernel_size[i],
                                             paddings[i], strides[i]);
      if (desired_size != dst_tz[i + 2]) {
        right_bot_padding[i] += strides[i] - 1;
      }
    }
  }
};

295 296 297 298
template <typename T>
class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
299 300 301
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL Pool must use CPUPlace"));
302 303 304 305 306 307
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();

    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");

308
    PoolingMKLDNNHandler<T> handler(ctx, dev_ctx.GetEngine(), input, output);
309 310 311 312

    auto src_memory = handler.AcquireSrcMemory(input);
    auto dst_memory = handler.AcquireDstMemory(output);

A
Adam 已提交
313
    auto pool_p = handler.AcquireForwardPrimitive();
314

315
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
316 317
    if ((ctx.Attr<bool>("is_test") == false) &&
        (ctx.Attr<std::string>("pooling_type") == "max")) {
318
      // Training
319 320
      auto workspace_memory =
          handler.AcquireWorkspaceMemory(dev_ctx, ctx.OutputName("Out"));
A
Adam 已提交
321 322 323
      pool_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory},
                                {MKLDNN_ARG_DST, *dst_memory},
                                {MKLDNN_ARG_WORKSPACE, *workspace_memory}});
324 325
    } else {
      // Inference
A
Adam 已提交
326 327
      pool_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory},
                                {MKLDNN_ARG_DST, *dst_memory}});
328
    }
A
Adam 已提交
329
    astream.wait();
330 331

    output->set_layout(DataLayout::kMKLDNN);
A
Adam 已提交
332
    output->set_format(platform::GetMKLDNNFormat(*dst_memory));
333 334 335 336 337 338 339
  }
};

template <typename T>
class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
340 341 342
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL PoolGrad must use CPUPlace"));
343 344 345 346 347 348 349
    const Tensor* in_x = ctx.Input<Tensor>("X");
    const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* in_x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();

350 351
    PoolingMKLDNNHandler<T> handler(ctx, dev_ctx.GetEngine(), in_x, out_grad,
                                    in_x_grad);
352 353 354 355

    auto diff_dst_memory = handler.AcquireDiffDstMemory(out_grad);
    auto diff_src_memory = handler.AcquireDiffSrcMemory(in_x_grad);

A
Adam 已提交
356
    auto pool_bwd_p = handler.AcquireBackwardPrimitive();
357

358
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
359
    if (ctx.Attr<std::string>("pooling_type") == "max") {
360
      // Max - pooling needs Workspace
361 362
      auto workspace_memory =
          handler.AcquireWorkspaceMemory(dev_ctx, ctx.InputName("Out"));
A
Adam 已提交
363 364 365
      pool_bwd_p->execute(astream, {{MKLDNN_ARG_DIFF_SRC, *diff_src_memory},
                                    {MKLDNN_ARG_DIFF_DST, *diff_dst_memory},
                                    {MKLDNN_ARG_WORKSPACE, *workspace_memory}});
366 367
    } else {
      // Average Pooling
A
Adam 已提交
368 369
      pool_bwd_p->execute(astream, {{MKLDNN_ARG_DIFF_SRC, *diff_src_memory},
                                    {MKLDNN_ARG_DIFF_DST, *diff_dst_memory}});
370
    }
A
Adam 已提交
371
    astream.wait();
372 373

    in_x_grad->set_layout(DataLayout::kMKLDNN);
A
Adam 已提交
374
    in_x_grad->set_format(platform::GetMKLDNNFormat(*diff_src_memory));
375 376 377 378 379 380
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

381 382
namespace ops = paddle::operators;

383
REGISTER_OP_KERNEL(pool2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaoli.liu@intel.com 已提交
384 385
                   ops::PoolMKLDNNOpKernel<float>,
                   ops::PoolMKLDNNOpKernel<int8_t>,
386 387
                   ops::PoolMKLDNNOpKernel<uint8_t>,
                   ops::PoolMKLDNNOpKernel<paddle::platform::bfloat16>);
X
xiaoli.liu@intel.com 已提交
388

389
REGISTER_OP_KERNEL(pool2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
A
arlesniak 已提交
390 391
                   ops::PoolMKLDNNGradOpKernel<float>,
                   ops::PoolMKLDNNGradOpKernel<paddle::platform::bfloat16>);