test_spectral_op.py 8.0 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18 19
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle

import re
import sys
F
Feiyu Chan 已提交
20
from spectral_op_np import fft_c2c, fft_r2c, fft_c2r, fft_c2c_backward, fft_r2c_backward, fft_c2r_backward
21
from paddle import _C_ops
22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
sys.path.append("../")
from op_test import OpTest

paddle.enable_static()

TEST_CASE_NAME = 'test_case'


def parameterize(attrs, input_values=None):

    if isinstance(attrs, str):
        attrs = [attrs]
    input_dicts = (attrs if input_values is None else
                   [dict(zip(attrs, vals)) for vals in input_values])

    def decorator(base_class):
        test_class_module = sys.modules[base_class.__module__].__dict__
        for idx, input_dict in enumerate(input_dicts):
            test_class_dict = dict(base_class.__dict__)
            test_class_dict.update(input_dict)

            name = class_name(base_class, idx, input_dict)

            test_class_module[name] = type(name, (base_class, ),
                                           test_class_dict)

        for method_name in list(base_class.__dict__):
            if method_name.startswith("test"):
                delattr(base_class, method_name)
        return base_class

    return decorator


def to_safe_name(s):
    return str(re.sub("[^a-zA-Z0-9_]+", "_", s))


def class_name(cls, num, params_dict):
    suffix = to_safe_name(
        next((v for v in params_dict.values() if isinstance(v, str)), ""))
    if TEST_CASE_NAME in params_dict:
        suffix = to_safe_name(params_dict["test_case"])
    return "{}_{}{}".format(cls.__name__, num, suffix and "_" + suffix)


F
Feiyu Chan 已提交
69
def fft_c2c_python_api(x, axes, norm, forward):
70
    return _C_ops.fft_c2c(x, axes, norm, forward)
F
Feiyu Chan 已提交
71 72 73


def fft_r2c_python_api(x, axes, norm, forward, onesided):
74
    return _C_ops.fft_r2c(x, axes, norm, forward, onesided)
F
Feiyu Chan 已提交
75 76 77


def fft_c2r_python_api(x, axes, norm, forward, last_dim_size=0):
78
    return _C_ops.fft_c2r(x, axes, norm, forward, last_dim_size)
F
Feiyu Chan 已提交
79 80


81 82 83 84 85 86
@parameterize(
    (TEST_CASE_NAME, 'x', 'axes', 'norm', 'forward'),
    [('test_axes_is_sqe_type', (np.random.random(
        (12, 14)) + 1j * np.random.random(
            (12, 14))).astype(np.complex128), [0, 1], 'forward', True),
     ('test_axis_not_last', (np.random.random(
F
Feiyu Chan 已提交
87 88
         (4, 8, 4)) + 1j * np.random.random(
             (4, 8, 4))).astype(np.complex128), (0, 1), "backward", False),
89 90 91 92 93 94
     ('test_norm_forward', (np.random.random((12, 14)) + 1j * np.random.random(
         (12, 14))).astype(np.complex128), (0, ), "forward", False),
     ('test_norm_backward', (np.random.random((12, 14)) + 1j * np.random.random(
         (12, 14))).astype(np.complex128), (0, ), "backward", True),
     ('test_norm_ortho', (np.random.random((12, 14)) + 1j * np.random.random(
         (12, 14))).astype(np.complex128), (1, ), "ortho", True)])
95 96 97 98
class TestFFTC2COp(OpTest):

    def setUp(self):
        self.op_type = "fft_c2c"
F
Feiyu Chan 已提交
99 100
        self.dtype = self.x.dtype
        self.python_api = fft_c2c_python_api
101 102 103 104 105 106 107 108 109 110 111

        out = fft_c2c(self.x, self.axes, self.norm, self.forward)

        self.inputs = {'X': self.x}
        self.attrs = {
            'axes': self.axes,
            'normalization': self.norm,
            "forward": self.forward
        }
        self.outputs = {'Out': out}

F
Feiyu Chan 已提交
112 113 114 115 116 117
        self.out_grad = (np.random.random(self.x.shape) +
                         1j * np.random.random(self.x.shape)).astype(
                             self.x.dtype)
        self.x_grad = fft_c2c_backward(self.out_grad, self.axes, self.norm,
                                       self.forward)

118
    def test_check_output(self):
F
Feiyu Chan 已提交
119 120 121 122 123 124 125 126
        self.check_output(check_eager=True)

    def test_check_grad(self):
        self.check_grad("X",
                        "Out",
                        user_defined_grads=[self.x_grad],
                        user_defined_grad_outputs=[self.out_grad],
                        check_eager=True)
127 128 129 130 131


@parameterize(
    (TEST_CASE_NAME, 'x', 'axes', 'norm', 'forward', 'last_dim_size'),
    [('test_axes_is_sqe_type', (np.random.random(
132 133 134
        (12, 14)) + 1j * np.random.random(
            (12, 14))).astype(np.complex128), [0, 1], 'forward', True, 26),
     ('test_axis_not_last', (np.random.random(
F
Feiyu Chan 已提交
135
         (4, 7, 4)) + 1j * np.random.random((4, 7, 4))).astype(np.complex128),
136
      (0, 1), "backward", False, None),
137 138 139
     ('test_norm_forward', (np.random.random((12, 14)) + 1j * np.random.random(
         (12, 14))).astype(np.complex128), (0, ), "forward", False, 22),
     ('test_norm_backward', (np.random.random((12, 14)) + 1j * np.random.random(
140 141 142
         (12, 14))).astype(np.complex128), (0, ), "backward", True, 22),
     ('test_norm_ortho', (np.random.random((12, 14)) + 1j * np.random.random(
         (12, 14))).astype(np.complex128), (1, ), "ortho", True, 26)])
143 144 145 146
class TestFFTC2ROp(OpTest):

    def setUp(self):
        self.op_type = "fft_c2r"
F
Feiyu Chan 已提交
147 148
        self.dtype = self.x.dtype
        self.python_api = fft_c2r_python_api
149 150 151 152 153 154 155 156 157 158 159 160 161

        out = fft_c2r(self.x, self.axes, self.norm, self.forward,
                      self.last_dim_size)

        self.inputs = {'X': self.x}
        self.attrs = {
            "axes": self.axes,
            "normalization": self.norm,
            "forward": self.forward,
            "last_dim_size": self.last_dim_size
        }
        self.outputs = {'Out': out}

F
Feiyu Chan 已提交
162 163 164 165 166
        self.out_grad = np.random.random(out.shape).astype(out.dtype)
        self.x_grad = fft_c2r_backward(self.x, self.out_grad, self.axes,
                                       self.norm, self.forward,
                                       self.last_dim_size)

167
    def test_check_output(self):
F
Feiyu Chan 已提交
168 169 170 171 172 173 174 175
        self.check_output(check_eager=True)

    def test_check_grad(self):
        self.check_grad(["X"],
                        "Out",
                        user_defined_grads=[self.x_grad],
                        user_defined_grad_outputs=[self.out_grad],
                        check_eager=True)
176 177 178 179


@parameterize(
    (TEST_CASE_NAME, 'x', 'axes', 'norm', 'forward', 'onesided'),
F
Feiyu Chan 已提交
180
    [('test_axes_is_sqe_type', np.random.randn(12, 18).astype(np.float64),
181
      (0, 1), 'forward', True, True),
F
Feiyu Chan 已提交
182
     ('test_axis_not_last', np.random.randn(4, 8, 4).astype(np.float64),
183
      (0, 1), "backward", False, True),
F
Feiyu Chan 已提交
184
     ('test_norm_forward', np.random.randn(12, 18).astype(np.float64),
185
      (0, 1), "forward", False, False),
F
Feiyu Chan 已提交
186
     ('test_norm_backward', np.random.randn(12, 18).astype(np.float64),
187
      (0, ), "backward", True, False),
F
Feiyu Chan 已提交
188
     ('test_norm_ortho', np.random.randn(12, 18).astype(np.float64),
189
      (1, ), "ortho", True, False)])
190 191 192 193
class TestFFTR2COp(OpTest):

    def setUp(self):
        self.op_type = "fft_r2c"
F
Feiyu Chan 已提交
194 195
        self.dtype = self.x.dtype
        self.python_api = fft_r2c_python_api
196 197 198 199 200 201 202 203 204 205 206 207

        out = fft_r2c(self.x, self.axes, self.norm, self.forward, self.onesided)

        self.inputs = {'X': self.x}
        self.attrs = {
            'axes': self.axes,
            'normalization': self.norm,
            "forward": self.forward,
            'onesided': self.onesided
        }
        self.outputs = {'Out': out}

F
Feiyu Chan 已提交
208 209 210 211
        self.out_grad = np.random.random(out.shape).astype(out.dtype)
        self.x_grad = fft_r2c_backward(self.x, self.out_grad, self.axes,
                                       self.norm, self.forward, self.onesided)

212
    def test_check_output(self):
F
Feiyu Chan 已提交
213 214 215 216 217 218 219 220
        self.check_output(check_eager=True)

    def test_check_grad(self):
        self.check_grad("X",
                        "Out",
                        user_defined_grads=[self.x_grad],
                        user_defined_grad_outputs=[self.out_grad],
                        check_eager=True)