test_spectral_op.py 6.3 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import unittest

import numpy as np
import paddle

import re
import sys
from spectral_op_np import fft_c2c, fft_r2c, fft_c2r
import paddle.fluid.core as core
import paddle.fluid.dygraph as dg
import paddle.static as static
from numpy.random import random as rand
from paddle.fluid import Program, program_guard
29

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
sys.path.append("../")
from op_test import OpTest

paddle.enable_static()

TEST_CASE_NAME = 'test_case'


def parameterize(attrs, input_values=None):

    if isinstance(attrs, str):
        attrs = [attrs]
    input_dicts = (attrs if input_values is None else
                   [dict(zip(attrs, vals)) for vals in input_values])

    def decorator(base_class):
        test_class_module = sys.modules[base_class.__module__].__dict__
        for idx, input_dict in enumerate(input_dicts):
            test_class_dict = dict(base_class.__dict__)
            test_class_dict.update(input_dict)

            name = class_name(base_class, idx, input_dict)

            test_class_module[name] = type(name, (base_class, ),
                                           test_class_dict)

        for method_name in list(base_class.__dict__):
            if method_name.startswith("test"):
                delattr(base_class, method_name)
        return base_class

    return decorator


def to_safe_name(s):
    return str(re.sub("[^a-zA-Z0-9_]+", "_", s))


def class_name(cls, num, params_dict):
    suffix = to_safe_name(
        next((v for v in params_dict.values() if isinstance(v, str)), ""))
    if TEST_CASE_NAME in params_dict:
        suffix = to_safe_name(params_dict["test_case"])
    return "{}_{}{}".format(cls.__name__, num, suffix and "_" + suffix)


76 77 78 79 80 81 82 83 84 85 86 87 88 89
@parameterize(
    (TEST_CASE_NAME, 'x', 'axes', 'norm', 'forward'),
    [('test_axes_is_sqe_type', (np.random.random(
        (12, 14)) + 1j * np.random.random(
            (12, 14))).astype(np.complex128), [0, 1], 'forward', True),
     ('test_axis_not_last', (np.random.random(
         (4, 4, 4)) + 1j * np.random.random(
             (4, 4, 4))).astype(np.complex128), (0, 1), "backward", False),
     ('test_norm_forward', (np.random.random((12, 14)) + 1j * np.random.random(
         (12, 14))).astype(np.complex128), (0, ), "forward", False),
     ('test_norm_backward', (np.random.random((12, 14)) + 1j * np.random.random(
         (12, 14))).astype(np.complex128), (0, ), "backward", True),
     ('test_norm_ortho', (np.random.random((12, 14)) + 1j * np.random.random(
         (12, 14))).astype(np.complex128), (1, ), "ortho", True)])
90
class TestFFTC2COp(OpTest):
91
    # Because framwork not support complex numerial gradient, we skip gradient check.
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    no_need_check_grad = True

    def setUp(self):
        self.op_type = "fft_c2c"

        out = fft_c2c(self.x, self.axes, self.norm, self.forward)

        self.inputs = {'X': self.x}
        self.attrs = {
            'axes': self.axes,
            'normalization': self.norm,
            "forward": self.forward
        }
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()


@parameterize(
    (TEST_CASE_NAME, 'x', 'axes', 'norm', 'forward', 'last_dim_size'),
    [('test_axes_is_sqe_type', (np.random.random(
114 115 116 117 118
        (12, 14)) + 1j * np.random.random(
            (12, 14))).astype(np.complex128), [0, 1], 'forward', True, 26),
     ('test_axis_not_last', (np.random.random(
         (4, 4, 4)) + 1j * np.random.random((4, 4, 4))).astype(np.complex128),
      (0, 1), "backward", False, None),
119 120 121
     ('test_norm_forward', (np.random.random((12, 14)) + 1j * np.random.random(
         (12, 14))).astype(np.complex128), (0, ), "forward", False, 22),
     ('test_norm_backward', (np.random.random((12, 14)) + 1j * np.random.random(
122 123 124
         (12, 14))).astype(np.complex128), (0, ), "backward", True, 22),
     ('test_norm_ortho', (np.random.random((12, 14)) + 1j * np.random.random(
         (12, 14))).astype(np.complex128), (1, ), "ortho", True, 26)])
125
class TestFFTC2ROp(OpTest):
126
    # Because framwork not support complex numerial gradient, we skip gradient check.
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    no_need_check_grad = True

    def setUp(self):
        self.op_type = "fft_c2r"

        out = fft_c2r(self.x, self.axes, self.norm, self.forward,
                      self.last_dim_size)

        self.inputs = {'X': self.x}
        self.attrs = {
            "axes": self.axes,
            "normalization": self.norm,
            "forward": self.forward,
            "last_dim_size": self.last_dim_size
        }
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()


@parameterize(
    (TEST_CASE_NAME, 'x', 'axes', 'norm', 'forward', 'onesided'),
    [('test_axes_is_sqe_type', np.random.randn(12, 14).astype(np.float64),
151 152 153 154 155 156 157 158 159
      (0, 1), 'forward', True, True),
     ('test_axis_not_last', np.random.randn(4, 4, 4).astype(np.float64),
      (0, 1), "backward", False, True),
     ('test_norm_forward', np.random.randn(12, 14).astype(np.float64),
      (0, 1), "forward", False, False),
     ('test_norm_backward', np.random.randn(12, 14).astype(np.float64),
      (0, ), "backward", True, False),
     ('test_norm_ortho', np.random.randn(12, 14).astype(np.float64),
      (1, ), "ortho", True, False)])
160
class TestFFTR2COp(OpTest):
161
    # Because framwork not support complex numerial gradient, we skip gradient check.
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    no_need_check_grad = True

    def setUp(self):
        self.op_type = "fft_r2c"

        out = fft_r2c(self.x, self.axes, self.norm, self.forward, self.onesided)

        self.inputs = {'X': self.x}
        self.attrs = {
            'axes': self.axes,
            'normalization': self.norm,
            "forward": self.forward,
            'onesided': self.onesided
        }
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()