pipeline_optimizer.py 11.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

14
from __future__ import print_function
15
from __future__ import division
16 17 18 19

import paddle.fluid as fluid
from paddle.fluid import core, unique_name
from ..base.private_helper_function import wait_server_ready
20 21
from paddle.fluid.optimizer import PipelineOptimizer as PO
from .meta_optimizer_base import MetaOptimizerBase
22
from .common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY, CollectiveHelper, is_update_op, is_loss_grad_op, is_backward_op, is_optimizer_op
23 24


25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
def _get_node_num(endpoints):
    ss = set()
    for ep in endpoints:
        ip = ep.split(":")[0].strip()
        if ip not in ss:
            ss.add(ip)
    return len(ss)


class PipelineHelper(object):
    def __init__(self, role_maker, wait_port='6174'):
        self.wait_port = wait_port
        self.role_maker = role_maker

    def update_startup_program(self,
                               startup_program=None,
                               inner_parallelism=None):
        self.startup_program = startup_program

        endpoints = self.role_maker._get_trainer_endpoints()
        current_endpoint = endpoints[self.role_maker._worker_index()]
        node_num = _get_node_num(endpoints)
        assert len(endpoints) % node_num == 0
        nranks = self.role_maker._worker_num()
        rank = self.role_maker._worker_index()

        # Create ring 0 for all gpus in a pipeline
        pipeline_endpoints = []
        pipeline_rank = rank % inner_parallelism
        pipeline_id = rank // inner_parallelism
        for idx, ep in enumerate(endpoints):
            if idx // inner_parallelism == pipeline_id:
                pipeline_endpoints.append(ep)
        self._init_communicator(self.startup_program, current_endpoint,
                                pipeline_endpoints, pipeline_rank, 0,
                                self.wait_port)

        pipeline_num = len(endpoints) // inner_parallelism
        if pipeline_num == 1: return
        # Create rings for gpus with the same gpu id
        eps = []
        local_rank = self.role_maker._worker_index() % inner_parallelism
        ring_id = local_rank + 1
        for i in range(pipeline_num):
            eps.append(endpoints[i * inner_parallelism + local_rank])
        temp_rank = self.role_maker._worker_index() // inner_parallelism
        self._init_communicator(self.startup_program, current_endpoint, eps,
                                temp_rank, ring_id, self.wait_port)
        self._broadcast_params(ring_id)
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

    def _init_communicator(self, program, current_endpoint, endpoints, rank,
                           ring_id, wait_port):
        nranks = len(endpoints)
        other_endpoints = endpoints[:]
        other_endpoints.remove(current_endpoint)
        if rank == 0 and wait_port:
            wait_server_ready(other_endpoints)

        block = program.global_block()
        nccl_id_var = block.create_var(
            name=unique_name.generate('nccl_id'),
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        block.append_op(
            type='c_gen_nccl_id',
            inputs={},
            outputs={'Out': nccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints,
96
                OP_ROLE_KEY: OpRole.Forward,
97 98 99 100 101 102 103 104 105 106 107 108
            })
        block.append_op(
            type='c_comm_init',
            inputs={'X': nccl_id_var},
            outputs={},
            attrs={
                'nranks': nranks,
                'rank': rank,
                'ring_id': ring_id,
                OP_ROLE_KEY: OpRole.Forward,
            })

109
    def _broadcast_params(self, ring_id):
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
        block = self.startup_program.global_block()
        for param in block.iter_parameters():
            if param.is_distributed:
                continue

            block.append_op(
                type='c_broadcast',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={
                    'ring_id': ring_id,
                    'root': 0,
                    OP_ROLE_KEY: OpRole.Forward
                })

125 126 127 128 129 130
        block.append_op(
            type='c_sync_comm_stream',
            inputs={'X': param},
            outputs={'Out': param},
            attrs={'ring_id': ring_id,
                   OP_ROLE_KEY: OpRole.Forward})
131 132


133 134 135 136 137 138
class PipelineOptimizer(MetaOptimizerBase):
    def __init__(self, optimizer):
        super(PipelineOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
        # we do not allow meta optimizer to be inner optimizer currently
        self.meta_optimizers_white_list = []
139
        self.meta_optimizers_black_list = []
140 141 142 143 144

    def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
                        user_defined_strategy):
        super(PipelineOptimizer, self)._set_basic_info(
            loss, role_maker, user_defined_optimizer, user_defined_strategy)
145 146
        self.num_microbatches = user_defined_strategy.pipeline_configs[
            'micro_batch']
147 148

    def _can_apply(self):
149 150 151
        if not self.role_maker._is_collective:
            return False

152 153 154 155 156 157
        if self.user_defined_strategy.pipeline == True:
            return True
        return False

    def _disable_strategy(self, dist_strategy):
        dist_strategy.pipeline = False
158
        dist_strategy.pipeline_configs = {}
159

160
    def _enable_strategy(self, dist_strategy, context):
161 162 163 164 165 166 167 168 169 170
        dist_strategy.pipeline = True
        dist_strategy.pipeline_configs = {"micro_batch": 1, }

    def _get_local_rank(self, current_endpoint, endpoints):
        cur_node_endpoints = []
        cur_ip = current_endpoint.split(':')[0].strip()
        for ep in endpoints:
            if cur_ip == ep.split(':')[0].strip():
                cur_node_endpoints.append(ep)
        return cur_node_endpoints.index(current_endpoint)
171

172 173 174 175 176
    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
177 178
        endpoints = self.role_maker._get_trainer_endpoints()
        current_endpoint = endpoints[self.role_maker._worker_index()]
179 180 181 182 183 184
        self.local_rank = self._get_local_rank(current_endpoint, endpoints)
        self.wrapped_opt = PO(self.inner_opt,
                              num_microbatches=self.num_microbatches,
                              start_cpu_core_id=self.local_rank)
        node_num = _get_node_num(endpoints)
        gpus_per_node = len(endpoints) // node_num
185
        self.startup_program = startup_program
186
        self.local_rank = self._get_local_rank(current_endpoint, endpoints)
187 188 189
        if startup_program is None:
            self.startup_program = fluid.default_startup_program()

190 191 192 193 194 195
        loss.block.program._pipeline_opt = dict()
        loss.block.program._pipeline_opt['local_rank'] = self.local_rank
        optimize_ops, params_grads, prog_list = \
            self.wrapped_opt.minimize(loss, startup_program,
                                      parameter_list, no_grad_set)

196 197 198
        assert prog_list
        self.main_program_list = prog_list
        self.main_program = loss.block.program
199 200
        self.inner_parallelism = loss.block.program._pipeline_opt[
            'inner_parallelism']
201 202 203 204
        nranks = len(endpoints)
        self.nranks = nranks
        self.nrings = len(self.main_program_list)

205
        self.rank = self.role_maker._worker_index()
206 207 208
        self.endpoints = endpoints
        self.current_endpoint = current_endpoint

209 210 211 212
        pipeline_helper = PipelineHelper(self.role_maker)
        pipeline_helper.update_startup_program(
            self.startup_program._pipeline_opt["startup_program"],
            self.inner_parallelism)
213

214
        self._transpile_main_program(loss, node_num, gpus_per_node)
215
        return optimize_ops, params_grads
216

217 218 219
    def _transpile_main_program(self, loss, node_num, gpus_per_node):
        self._insert_loss_grad_ops(loss, gpus_per_node, node_num)
        for ring_id in range(1, gpus_per_node + 1):
220 221
            self._insert_allreduce_ops(ring_id)

222
    def _insert_loss_grad_ops(self, loss, gpus_per_node, node_num):
223 224 225 226
        """
        In order to keep the learning rate consistent in different numbers of
        training workers, we scale the loss grad by the number of workers
        """
227 228
        block = self.main_program_list[gpus_per_node - 1][
            'program'].global_block()
229 230 231 232 233 234 235 236 237
        for idx, op in reversed(list(enumerate(block.ops))):
            if is_loss_grad_op(op):
                loss_grad_var = block.vars[op.output_arg_names[0]]
                block._insert_op(
                    idx + 1,
                    type='scale',
                    inputs={'X': loss_grad_var},
                    outputs={'Out': loss_grad_var},
                    attrs={
238
                        'scale': 1.0 / node_num,
239 240 241 242
                        OP_ROLE_KEY: OpRole.Backward
                    })

    def _insert_allreduce_ops(self, ring_id):
243
        block = self.main_program_list[ring_id - 1]['program'].global_block()
244 245 246 247
        origin_block = self.main_program.global_block()
        grad = None
        for idx, op in reversed(list(enumerate(block.ops))):
            if is_backward_op(op) and \
248
                    OP_ROLE_VAR_KEY in op.attr_names:
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
                op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY]
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
                offset = idx
                for i in range(0, len(op_role_var), 2):
                    param = block.vars[op_role_var[i]]
                    grad = block.vars[op_role_var[i + 1]]
                    origin_param = origin_block.vars[op_role_var[i]]
                    if origin_param.is_distributed:
                        continue
                    if offset == idx:
                        offset += 1
                        block._insert_op(
                            offset,
                            type='c_sync_calc_stream',
                            inputs={'X': grad},
                            outputs={'Out': grad},
                            attrs={OP_ROLE_KEY: OpRole.Backward})
                        offset += 1

                    block._insert_op(
                        offset,
                        type='c_sync_calc_stream',
                        inputs={'X': grad},
                        outputs={'Out': grad},
                        attrs={
                            'ring_id': ring_id,
                            OP_ROLE_KEY: OpRole.Backward
                        })

        if grad is None:
            return

        for idx, op in enumerate(block.ops):
            if is_optimizer_op(op):
                block._insert_op(
                    idx + ring_id,
                    type='c_sync_comm_stream',
                    inputs={'X': grad},
                    outputs={'Out': grad},
                    attrs={'ring_id': ring_id,
                           OP_ROLE_KEY: OpRole.Backward})
            break