pipeline_optimizer.py 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

14 15 16 17 18
from __future__ import print_function

import paddle.fluid as fluid
from paddle.fluid import core, unique_name
from ..base.private_helper_function import wait_server_ready
19 20
from paddle.fluid.optimizer import PipelineOptimizer as PO
from .meta_optimizer_base import MetaOptimizerBase
21
from .common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY, CollectiveHelper, is_update_op, is_loss_grad_op, is_backward_op, is_optimizer_op
22 23


24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
class PipelineHelper(CollectiveHelper):
    def __init__(self, role_maker, nrings=1, wait_port='6174'):
        super(PipelineHelper, self).__init__(role_maker, nrings, wait_port)

    def _init_communicator(self, program, current_endpoint, endpoints, rank,
                           ring_id, wait_port):
        nranks = len(endpoints)
        other_endpoints = endpoints[:]
        other_endpoints.remove(current_endpoint)
        if rank == 0 and wait_port:
            wait_server_ready(other_endpoints)

        block = program.global_block()
        nccl_id_var = block.create_var(
            name=unique_name.generate('nccl_id'),
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        block.append_op(
            type='c_gen_nccl_id',
            inputs={},
            outputs={'Out': nccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints,
                OP_ROLE_KEY: OpRole.Forward
            })

        block.append_op(
            type='c_comm_init',
            inputs={'X': nccl_id_var},
            outputs={},
            attrs={
                'nranks': nranks,
                'rank': rank,
                'ring_id': ring_id,
                OP_ROLE_KEY: OpRole.Forward,
                'device_id': OpRole.Forward
            })

    def _broadcast_params(self):
        block = self.startup_program.global_block()
        ring_id = 0
        for param in block.iter_parameters():
            if param.is_distributed:
                continue

            block.append_op(
                type='c_broadcast',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={
                    'ring_id': ring_id,
                    'root': 0,
                    OP_ROLE_KEY: OpRole.Forward
                })

        for ring_id in range(self.nrings):
            block.append_op(
                type='c_sync_comm_stream',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={'ring_id': ring_id,
                       OP_ROLE_KEY: OpRole.Forward})


90 91 92 93 94 95
class PipelineOptimizer(MetaOptimizerBase):
    def __init__(self, optimizer):
        super(PipelineOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
        # we do not allow meta optimizer to be inner optimizer currently
        self.meta_optimizers_white_list = []
96
        self.meta_optimizers_black_list = []
97 98 99 100 101 102 103 104 105

    def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
                        user_defined_strategy):
        super(PipelineOptimizer, self)._set_basic_info(
            loss, role_maker, user_defined_optimizer, user_defined_strategy)
        num_microbatches = user_defined_strategy.pipeline_configs['micro_batch']
        self.wrapped_opt = PO(self.inner_opt, num_microbatches=num_microbatches)

    def _can_apply(self):
106 107 108
        if not self.role_maker._is_collective:
            return False

109 110 111 112 113 114
        if self.user_defined_strategy.pipeline == True:
            return True
        return False

    def _disable_strategy(self, dist_strategy):
        dist_strategy.pipeline = False
115
        dist_strategy.pipeline_configs = {}
116

117
    def _enable_strategy(self, dist_strategy, context):
118 119 120
        # we do not support enable pipeline automatically right now
        return

121 122 123 124 125 126 127 128
    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
        optimize_ops, params_grads, prog_list = \
            self.wrapped_opt.minimize(loss, startup_program,
                                      parameter_list, no_grad_set)
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
        if self.role_maker.worker_num() == 1:
            return optimize_ops, params_grads

        endpoints = self.role_maker.get_trainer_endpoints()
        current_endpoint = endpoints[self.role_maker.worker_index()]
        self.startup_program = startup_program
        if startup_program is None:
            self.startup_program = fluid.default_startup_program()

        assert prog_list
        self.main_program_list = prog_list
        self.main_program = loss.block.program
        nranks = len(endpoints)
        self.nranks = nranks
        self.nrings = len(self.main_program_list)

        self.rank = self.role_maker.worker_index()
        self.endpoints = endpoints
        self.current_endpoint = current_endpoint

        pipeline_helper = PipelineHelper(self.role_maker, nrings=self.nrings)
        pipeline_helper.update_startup_program(self.startup_program)

        self._transpile_main_program()
153
        return optimize_ops, params_grads
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

    def _transpile_main_program(self):
        self._insert_loss_grad_ops()
        for ring_id in range(self.nrings):
            self._insert_allreduce_ops(ring_id)

    def _insert_loss_grad_ops(self):
        """
        In order to keep the learning rate consistent in different numbers of
        training workers, we scale the loss grad by the number of workers
        """
        block = self.main_program_list[self.nrings - 1]['program'].global_block(
        )
        for idx, op in reversed(list(enumerate(block.ops))):
            if is_loss_grad_op(op):
                loss_grad_var = block.vars[op.output_arg_names[0]]
                block._insert_op(
                    idx + 1,
                    type='scale',
                    inputs={'X': loss_grad_var},
                    outputs={'Out': loss_grad_var},
                    attrs={
                        'scale': 1.0 / self.nranks,
                        OP_ROLE_KEY: OpRole.Backward
                    })

    def _insert_allreduce_ops(self, ring_id):
        block = self.main_program_list[ring_id]['program'].global_block()
        origin_block = self.main_program.global_block()
        grad = None
        for idx, op in reversed(list(enumerate(block.ops))):
            if is_backward_op(op) and \
186
                    OP_ROLE_VAR_KEY in op.attr_names:
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
                op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY]
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
                offset = idx
                for i in range(0, len(op_role_var), 2):
                    param = block.vars[op_role_var[i]]
                    grad = block.vars[op_role_var[i + 1]]
                    origin_param = origin_block.vars[op_role_var[i]]
                    if origin_param.is_distributed:
                        continue
                    if offset == idx:
                        offset += 1
                        block._insert_op(
                            offset,
                            type='c_sync_calc_stream',
                            inputs={'X': grad},
                            outputs={'Out': grad},
                            attrs={OP_ROLE_KEY: OpRole.Backward})
                        offset += 1

                    block._insert_op(
                        offset,
                        type='c_sync_calc_stream',
                        inputs={'X': grad},
                        outputs={'Out': grad},
                        attrs={
                            'ring_id': ring_id,
                            OP_ROLE_KEY: OpRole.Backward
                        })

        if grad is None:
            return

        for idx, op in enumerate(block.ops):
            if is_optimizer_op(op):
                block._insert_op(
                    idx + ring_id,
                    type='c_sync_comm_stream',
                    inputs={'X': grad},
                    outputs={'Out': grad},
                    attrs={'ring_id': ring_id,
                           OP_ROLE_KEY: OpRole.Backward})
            break