pooling.cc 19.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/math/pooling.h"

namespace paddle {
namespace operators {
namespace math {

template <typename PoolProcess, typename T>
class Pool2dForwardFunctor<platform::CPUPlace, PoolProcess, T> {
 public:
24 25
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& output,
26
                  std::vector<int>& ksize, std::vector<int>& strides,
27
                  std::vector<int>& paddings, PoolProcess pool_process) {
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
C
chengduoZH 已提交
45
    T* output_data = output.mutable_data<T>(context.GetPlace());
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);
            T ele = pool_process.initial();
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
                pool_process.process(ele, input_data[h * input_width + w]);
              }
            }
            int pool_size = (hend - hstart) * (wend - wstart);
            pool_process.finalize(ele, (static_cast<T>(pool_size)));
            output_data[ph * output_width + pw] = ele;
          }
        }
        input_data += input_stride;
        output_data += output_stride;
      }
    }
  }
};

template <typename PoolProcess, class T>
class Pool2dBackwardFunctor<platform::CPUPlace, PoolProcess, T> {
 public:
78 79
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& input_grad,
80 81 82
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings,
83
                  PoolProcess pool_process) {
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
102
    T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());
103 104 105 106 107 108 109 110 111 112 113 114

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);
            int pool_size = (hend - hstart) * (wend - wstart);
115
            float scale = 1.0 / pool_size;
116 117 118 119 120 121 122
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
                pool_process.gradProcess(
                    input_data[h * input_width + w],
                    output_data[ph * output_width + pw],
                    output_grad_data[ph * output_width + pw],
                    input_grad_data[h * input_width + w],
123
                    static_cast<T>(scale));
124 125 126 127 128 129 130 131 132 133 134 135 136
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
template <class T>
class MaxPool2dBackwardFunctor<platform::CPUPlace, T> {
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& input_grad,
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings) {
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);

            bool stop = false;
            for (int h = hstart; h < hend && !stop; ++h) {
              for (int w = wstart; w < wend && !stop; ++w) {
                int input_idx = h * input_width + w;
                int output_idx = ph * output_width + pw;
                if (input_data[input_idx] == output_data[output_idx]) {
                  input_grad_data[input_idx] += output_grad_data[output_idx];
                  stop = true;
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};

template class MaxPool2dBackwardFunctor<platform::CPUPlace, float>;
C
chengduoZH 已提交
199
// template class MaxPool2dBackwardFunctor<platform::CPUPlace, double>;
200

201 202 203
template class Pool2dForwardFunctor<
    platform::CPUPlace, paddle::operators::math::pool::maxPool<float>, float>;
template class Pool2dForwardFunctor<
C
chengduoZH 已提交
204
    platform::CPUPlace, paddle::operators::math::pool::avgPool<float>, float>;
205
template class Pool2dBackwardFunctor<
C
chengduoZH 已提交
206 207
    platform::CPUPlace, paddle::operators::math::pool::maxPoolGrad<float>,
    float>;
208
template class Pool2dBackwardFunctor<
C
chengduoZH 已提交
209 210
    platform::CPUPlace, paddle::operators::math::pool::avgPoolGrad<float>,
    float>;
211 212 213
template class Pool2dForwardFunctor<
    platform::CPUPlace, paddle::operators::math::pool::maxPool<double>, double>;
template class Pool2dForwardFunctor<
C
chengduoZH 已提交
214
    platform::CPUPlace, paddle::operators::math::pool::avgPool<double>, double>;
215
template class Pool2dBackwardFunctor<
C
chengduoZH 已提交
216 217
    platform::CPUPlace, paddle::operators::math::pool::maxPoolGrad<double>,
    double>;
218
template class Pool2dBackwardFunctor<
C
chengduoZH 已提交
219 220
    platform::CPUPlace, paddle::operators::math::pool::avgPoolGrad<double>,
    double>;
221 222 223 224

template <typename PoolProcess, class T>
class Pool3dForwardFunctor<platform::CPUPlace, PoolProcess, T> {
 public:
225 226
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& output,
227
                  std::vector<int>& ksize, std::vector<int>& strides,
228
                  std::vector<int>& paddings, PoolProcess pool_process) {
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
C
chengduoZH 已提交
251
    T* output_data = output.mutable_data<T>(context.GetPlace());
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          int dstart = pd * stride_depth - padding_depth;
          int dend = std::min(dstart + ksize_depth, input_depth);
          dstart = std::max(dstart, 0);
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);
              int output_idx = (pd * output_height + ph) * output_width + pw;
              T ele = pool_process.initial();
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
                    pool_process.process(
                        ele,
                        input_data[(d * input_height + h) * input_width + w]);
                  }
                }
              }
              int pool_size =
                  (dend - dstart) * (hend - hstart) * (wend - wstart);
              pool_process.finalize(ele, static_cast<T>(pool_size));
              output_data[output_idx] = ele;
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
      }
    }
  }
};

template <typename PoolProcess, class T>
class Pool3dBackwardFunctor<platform::CPUPlace, PoolProcess, T> {
 public:
295 296
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& input_grad,
297 298 299
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings,
300
                  PoolProcess pool_process) {
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
324
    T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          int dstart = pd * stride_depth - padding_depth;
          int dend = std::min(dstart + ksize_depth, input_depth);
          dstart = std::max(dstart, 0);
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);

            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);

              int pool_size =
                  (dend - dstart) * (hend - hstart) * (wend - wstart);
344
              float scale = 1.0 / pool_size;
345 346 347 348 349 350 351 352 353
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    int output_idx =
                        (pd * output_height + ph) * output_width + pw;
                    pool_process.gradProcess(
                        input_data[input_idx], output_data[output_idx],
                        output_grad_data[output_idx],
354
                        input_grad_data[input_idx], static_cast<T>(scale));
355 356 357 358 359 360
                  }
                }
              }
            }
          }
        }
361 362 363 364
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
365 366 367 368 369
      }
    }
  }
};

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
template <class T>
class MaxPool3dBackwardFunctor<platform::CPUPlace, T> {
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& input_grad,
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings) {
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          int dstart = pd * stride_depth - padding_depth;
          int dend = std::min(dstart + ksize_depth, input_depth);
          dstart = std::max(dstart, 0);
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);
              bool stop = false;
              for (int d = dstart; d < dend && !stop; ++d) {
                for (int h = hstart; h < hend && !stop; ++h) {
                  for (int w = wstart; w < wend && !stop; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    int output_idx =
                        (pd * output_height + ph) * output_width + pw;

                    if (input_data[input_idx] == output_data[output_idx]) {
                      input_grad_data[input_idx] +=
                          output_grad_data[output_idx];
                      stop = true;
                    }
                  }
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};

template class MaxPool3dBackwardFunctor<platform::CPUPlace, float>;
C
chengduoZH 已提交
446
// template class MaxPool3dBackwardFunctor<platform::CPUPlace, double>;
447

448 449 450
template class Pool3dForwardFunctor<
    platform::CPUPlace, paddle::operators::math::pool::maxPool<float>, float>;
template class Pool3dForwardFunctor<
C
chengduoZH 已提交
451
    platform::CPUPlace, paddle::operators::math::pool::avgPool<float>, float>;
452
template class Pool3dBackwardFunctor<
C
chengduoZH 已提交
453 454
    platform::CPUPlace, paddle::operators::math::pool::maxPoolGrad<float>,
    float>;
455
template class Pool3dBackwardFunctor<
C
chengduoZH 已提交
456 457
    platform::CPUPlace, paddle::operators::math::pool::avgPoolGrad<float>,
    float>;
458 459 460
template class Pool3dForwardFunctor<
    platform::CPUPlace, paddle::operators::math::pool::maxPool<double>, double>;
template class Pool3dForwardFunctor<
C
chengduoZH 已提交
461
    platform::CPUPlace, paddle::operators::math::pool::avgPool<double>, double>;
462
template class Pool3dBackwardFunctor<
C
chengduoZH 已提交
463 464
    platform::CPUPlace, paddle::operators::math::pool::maxPoolGrad<double>,
    double>;
465
template class Pool3dBackwardFunctor<
C
chengduoZH 已提交
466 467
    platform::CPUPlace, paddle::operators::math::pool::avgPoolGrad<double>,
    double>;
468 469 470
}  // namespace math
}  // namespace operators
}  // namespace paddle