pool2d_op.cc 12.4 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
16
#include "paddle/fluid/inference/tensorrt/plugin/pool_op_plugin.h"
N
nhzlx 已提交
17

W
wanghuancoder 已提交
18 19 20
namespace paddle {
namespace framework {
class Scope;
21

W
wanghuancoder 已提交
22 23 24 25 26 27
namespace proto {
class OpDesc;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

N
nhzlx 已提交
28 29 30 31
namespace paddle {
namespace inference {
namespace tensorrt {

32 33 34 35
inline void DealCeilMode(const nvinfer1::Dims &input_shape,
                         std::vector<int> ksize, std::vector<int> strides,
                         std::vector<int> paddings, nvinfer1::DimsHW *pre_pad,
                         nvinfer1::DimsHW *post_pad, int input_dims) {
N
nhzlx 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
  int input_height = input_shape.d[input_dims - 2];
  int input_width = input_shape.d[input_dims - 1];
  int floor_h_output_size =
      (input_height - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
  int ceil_h_output_size =
      (input_height - ksize[0] + 2 * paddings[0] + strides[0] - 1) /
          strides[0] +
      1;

  int floor_w_output_size =
      (input_width - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
  int ceil_w_output_size =
      (input_width - ksize[1] + 2 * paddings[1] + strides[1] - 1) / strides[1] +
      1;
  if (floor_h_output_size != ceil_h_output_size) {
    post_pad->h() = strides[0] - 1;
  }

  if (floor_w_output_size != ceil_w_output_size) {
    post_pad->w() = strides[1] - 1;
  }
}

N
nhzlx 已提交
59 60 61 62 63
/*
 * Pool2dOp, IPoolingLayer in TRT. This Layer doesn't has weights.
 */
class Pool2dOpConverter : public OpConverter {
 public:
N
nhzlx 已提交
64 65
  void operator()(const framework::proto::OpDesc &op,
                  const framework::Scope &scope, bool test_mode) override {
M
minqiyang 已提交
66
    VLOG(4)
N
nhzlx 已提交
67 68
        << "convert a fluid pool2d op to tensorrt pool2d layer without bias";
    framework::OpDesc op_desc(op, nullptr);
N
nhzlx 已提交
69 70 71 72
    auto *input1 = engine_->GetITensor(op_desc.Input("X")[0]);
    nvinfer1::Dims input_shape = input1->getDimensions();
    int input_dims = input_shape.nbDims;

73 74
    bool global_pooling =
        BOOST_GET_CONST(bool, op_desc.GetAttr("global_pooling"));
N
nhzlx 已提交
75
    std::string pool_type =
76
        BOOST_GET_CONST(std::string, op_desc.GetAttr("pooling_type"));
N
nhzlx 已提交
77
    std::vector<int> ksize =
78
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("ksize"));
N
nhzlx 已提交
79
    std::vector<int> strides =
80
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("strides"));
N
nhzlx 已提交
81
    std::vector<int> paddings =
82
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("paddings"));
83 84 85
    bool exclusive = op_desc.HasAttr("exclusive")
                         ? BOOST_GET_CONST(bool, op_desc.GetAttr("exclusive"))
                         : true;
86
    bool ceil_mode = BOOST_GET_CONST(bool, op_desc.GetAttr("ceil_mode"));
87 88
    bool adaptive = false;
    if (op_desc.HasAttr("adaptive"))
89
      adaptive = BOOST_GET_CONST(bool, op_desc.GetAttr("adaptive"));
90 91 92 93
    std::string padding_algorithm = "EXPLICIT";
    if (op_desc.HasAttr("padding_algorithm"))
      padding_algorithm =
          BOOST_GET_CONST(std::string, op_desc.GetAttr("padding_algorithm"));
N
nhzlx 已提交
94

N
nhzlx 已提交
95
    nvinfer1::PoolingType nv_pool_type = nvinfer1::PoolingType::kMAX;
96 97
    nvinfer1::ReduceOperation reduce_operation =
        nvinfer1::ReduceOperation::kMAX;
98 99
    plugin::PoolPlugin::PoolType plugin_pool_type =
        plugin::PoolPlugin::PoolType::max;
N
nhzlx 已提交
100
    if (pool_type == "max") {
N
nhzlx 已提交
101
      nv_pool_type = nvinfer1::PoolingType::kMAX;
102
      reduce_operation = nvinfer1::ReduceOperation::kMAX;
103
      plugin_pool_type = plugin::PoolPlugin::PoolType::max;
N
nhzlx 已提交
104
    } else if (pool_type == "avg") {
N
nhzlx 已提交
105
      nv_pool_type = nvinfer1::PoolingType::kAVERAGE;
106
      reduce_operation = nvinfer1::ReduceOperation::kAVG;
107
      plugin_pool_type = plugin::PoolPlugin::PoolType::avg;
N
nhzlx 已提交
108 109
    }

110 111 112
    if (padding_algorithm == "VALID") {
      std::fill(paddings.begin(), paddings.end(), 0);
    }
N
nhzlx 已提交
113 114 115 116 117
    nvinfer1::DimsHW nv_ksize(ksize[0], ksize[1]);
    nvinfer1::DimsHW nv_strides(strides[0], strides[1]);
    nvinfer1::DimsHW nv_paddings(paddings[0], paddings[1]);

    nvinfer1::ILayer *layer = nullptr;
W
wenbin 已提交
118 119
    nvinfer1::DimsHW g_pre_pad(0, 0);
    nvinfer1::DimsHW g_post_pad(0, 0);
W
wenbin 已提交
120 121 122 123 124
    // paddle Non ceil_mode : Output size = (input size - filter size + 2 *
    // padding) / stride (stride size) + 1
    // tensorrt EXPLICIT_ROUND_DOWN: O = floor((M - DK) / S) + 1
    // so if M - DK < 0 we need extra padding
    if (input_shape.d[input_dims - 2] - ksize[0] + 2 * paddings[0] < 0) {
W
wenbin 已提交
125
      g_post_pad.h() = strides[0] - 1;
W
wenbin 已提交
126 127
    }
    if (input_shape.d[input_dims - 1] - ksize[1] + 2 * paddings[1] < 0) {
W
wenbin 已提交
128
      g_post_pad.w() = strides[1] - 1;
W
wenbin 已提交
129
    }
N
nhzlx 已提交
130

131 132 133
    if (op_desc.HasAttr("enable_int8")) {
#if IS_TRT_VERSION_GE(5000)
      CHECK(op_desc.HasAttr("X_scale"));
134
      float input_scale = BOOST_GET_CONST(float, op_desc.GetAttr("X_scale"));
135 136 137 138
      engine_->SetTensorDynamicRange(input1, input_scale);
#endif
    }

139
    if (engine_->with_dynamic_shape()) {
140
      if (!adaptive && !global_pooling && !ceil_mode) {
W
wenbin 已提交
141
        if ((g_post_pad.w() > 0 || g_post_pad.h() > 0) &&
W
wenbin 已提交
142 143
            (padding_algorithm != "SAME")) {
          auto *pad_layer = TRT_ENGINE_ADD_LAYER(engine_, Padding, *input1,
W
wenbin 已提交
144
                                                 g_pre_pad, g_post_pad);
W
wenbin 已提交
145 146 147 148 149 150
          PADDLE_ENFORCE_NOT_NULL(
              pad_layer, platform::errors::Fatal(
                             "Pad layer in poolOp converter could not be "
                             "created. The pointer to pad layer is `NULL`."));
          input1 = pad_layer->getOutput(0);
        }
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
        auto *pool_layer = TRT_ENGINE_ADD_LAYER(engine_, Pooling, *input1,
                                                nv_pool_type, nv_ksize);
        pool_layer->setStride(nv_strides);
        pool_layer->setPadding(nv_paddings);
        pool_layer->setAverageCountExcludesPadding(exclusive);
        if (padding_algorithm == "SAME") {
          pool_layer->setPaddingMode(nvinfer1::PaddingMode::kSAME_UPPER);
        }
        layer = pool_layer;
      } else if (!adaptive && !global_pooling && ceil_mode) {
        nvinfer1::DimsHW pre_pad(0, 0);
        nvinfer1::DimsHW post_pad(0, 0);
        // If ceil mode is true, we will pad the appropriate size to the input.
        DealCeilMode(input_shape, ksize, strides, paddings, &pre_pad, &post_pad,
                     input_dims);
        auto *pad_layer = TRT_ENGINE_ADD_LAYER(
            engine_, Padding, *const_cast<nvinfer1::ITensor *>(input1), pre_pad,
            post_pad);
        PADDLE_ENFORCE_NOT_NULL(
            pad_layer, platform::errors::Fatal(
                           "Pad layer in poolOp converter could not be "
                           "created. The pointer to pad layer is `NULL`."));
        input1 = pad_layer->getOutput(0);

175 176 177 178
        auto *pool_layer = TRT_ENGINE_ADD_LAYER(engine_, Pooling, *input1,
                                                nv_pool_type, nv_ksize);
        pool_layer->setStride(nv_strides);
        pool_layer->setPadding(nv_paddings);
179
        pool_layer->setAverageCountExcludesPadding(exclusive);
180 181 182
        if (padding_algorithm == "SAME") {
          pool_layer->setPaddingMode(nvinfer1::PaddingMode::kSAME_UPPER);
        }
183
        layer = pool_layer;
184 185 186 187
      } else if (global_pooling) {
        auto *reduce_layer = TRT_ENGINE_ADD_LAYER(engine_, Reduce, *input1,
                                                  reduce_operation, 12, true);
        layer = reduce_layer;
188 189 190 191 192
      } else {
#if IS_TRT_VERSION_GE(6000)
        plugin::PoolPluginDynamic *plugin =
            new plugin::PoolPluginDynamic(ceil_mode, pool_type, adaptive, ksize,
                                          strides, paddings, global_pooling);
193
        layer = engine_->AddDynamicPlugin(&input1, 1, plugin);
194 195 196 197 198 199 200 201 202 203 204 205
#endif
      }
      auto output_name = op_desc.Output("Out")[0];
      layer->setName(("pool2d (Output: " + output_name + ")").c_str());
      layer->getOutput(0)->setName(output_name.c_str());
      engine_->SetITensor(output_name, layer->getOutput(0));
      if (test_mode) {
        engine_->DeclareOutput(output_name);
      }
      return;
    }

N
nhzlx 已提交
206 207 208
    if (global_pooling == true) {
      nv_ksize.d[0] = input_shape.d[input_dims - 2];
      nv_ksize.d[1] = input_shape.d[input_dims - 1];
W
wenbin 已提交
209 210
      auto *pool_layer = TRT_ENGINE_ADD_LAYER(engine_, Pooling, *input1,
                                              nv_pool_type, nv_ksize);
211
      PADDLE_ENFORCE_NOT_NULL(
212 213
          pool_layer, platform::errors::Fatal(
                          "trt pool layer in converter could not be created."));
N
nhzlx 已提交
214
      auto output_name = op_desc.Output("Out")[0];
215 216
      pool_layer->setStride(nv_strides);
      pool_layer->setPadding(nv_paddings);
217 218 219
      if (padding_algorithm == "SAME") {
        pool_layer->setPaddingMode(nvinfer1::PaddingMode::kSAME_UPPER);
      }
220 221 222 223 224
      pool_layer->setAverageCountExcludesPadding(exclusive);
      pool_layer->setName(("pool2d (Output: " + output_name + ")").c_str());
      pool_layer->getOutput(0)->setName(output_name.c_str());
      engine_->SetITensor(output_name, pool_layer->getOutput(0));
      layer = pool_layer;
N
nhzlx 已提交
225
      if (test_mode) {
N
nhzlx 已提交
226
        engine_->DeclareOutput(output_name);
227
      }
N
nhzlx 已提交
228 229
      return;
    }
230

231
    if (!adaptive) {
N
nhzlx 已提交
232
      if (ceil_mode) {
W
wenbin 已提交
233 234
        nvinfer1::DimsHW pre_pad(0, 0);
        nvinfer1::DimsHW post_pad(0, 0);
N
nhzlx 已提交
235 236 237
        // If ceil mode is true, we will pad the appropriate size to the input.
        DealCeilMode(input_shape, ksize, strides, paddings, &pre_pad, &post_pad,
                     input_dims);
W
wenbin 已提交
238 239
        auto *pad_layer =
            TRT_ENGINE_ADD_LAYER(engine_, Padding, *input1, pre_pad, post_pad);
W
wenbin 已提交
240

N
nhzlx 已提交
241
        PADDLE_ENFORCE_NOT_NULL(
242 243 244
            pad_layer, platform::errors::Fatal(
                           "Pad layer in poolOp converter could not be "
                           "created. The pointer to pad layer is `NULL`."));
N
nhzlx 已提交
245 246
        input1 = pad_layer->getOutput(0);
      }
W
wenbin 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
#if IS_TRT_VERSION_GE(8000)
      // Exclude padding pixels from the average mean is not supported well by
      // TRT
      // so enable padding for trt8.0 above.
      if ((g_post_pad.w() > 0 || g_post_pad.h() > 0) &&
          (padding_algorithm != "SAME") && !ceil_mode) {
        auto *pad_layer = TRT_ENGINE_ADD_LAYER(engine_, Padding, *input1,
                                               g_pre_pad, g_post_pad);
        PADDLE_ENFORCE_NOT_NULL(
            pad_layer, platform::errors::Fatal(
                           "Pad layer in poolOp converter could not be "
                           "created. The pointer to pad layer is `NULL`."));
        input1 = pad_layer->getOutput(0);
      }
#endif
W
wenbin 已提交
262 263
      auto *pool_layer = TRT_ENGINE_ADD_LAYER(engine_, Pooling, *input1,
                                              nv_pool_type, nv_ksize);
264 265 266
      PADDLE_ENFORCE_NOT_NULL(
          pool_layer, platform::errors::Fatal(
                          "trt pool layer in converter could not be created."));
N
nhzlx 已提交
267 268
      pool_layer->setStride(nv_strides);
      pool_layer->setPadding(nv_paddings);
269 270 271
      if (padding_algorithm == "SAME") {
        pool_layer->setPaddingMode(nvinfer1::PaddingMode::kSAME_UPPER);
      }
272
      pool_layer->setAverageCountExcludesPadding(exclusive);
N
nhzlx 已提交
273 274 275 276 277 278 279 280
      layer = pool_layer;
    } else {
      // Average pooling needs to exclude the padding pixels from the average
      // mean.
      // It is not supported well by TRT, we use a plugin here.
      std::vector<int> input_shape_v;
      for (int i = 0; i < input_dims; i++) {
        input_shape_v.push_back(input_shape.d[i]);
281
      }
282 283 284 285
      plugin::PoolPlugin *plugin =
          new plugin::PoolPlugin(ceil_mode, plugin_pool_type, adaptive, ksize,
                                 strides, paddings, input_shape_v);
      auto *pool_layer = engine_->AddPlugin(&input1, 1, plugin);
286 287 288 289
      PADDLE_ENFORCE_NOT_NULL(
          pool_layer,
          platform::errors::Fatal(
              "trt pool plugin layer in converter could not be created."));
290
      layer = pool_layer;
291
    }
N
nhzlx 已提交
292
    auto output_name = op_desc.Output("Out")[0];
293
    RreplenishLayerAndOutput(layer, "pool2d", {output_name}, test_mode);
N
nhzlx 已提交
294 295 296 297 298 299 300 301 302
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

USE_OP(pool2d);
REGISTER_TRT_OP_CONVERTER(pool2d, Pool2dOpConverter);