pool2d_op.cc 9.7 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
16
#include "paddle/fluid/inference/tensorrt/plugin/pool_op_plugin.h"
N
nhzlx 已提交
17

W
wanghuancoder 已提交
18 19 20 21 22 23 24 25 26
namespace paddle {
namespace framework {
class Scope;
namespace proto {
class OpDesc;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

N
nhzlx 已提交
27 28 29 30
namespace paddle {
namespace inference {
namespace tensorrt {

31 32 33 34
inline void DealCeilMode(const nvinfer1::Dims &input_shape,
                         std::vector<int> ksize, std::vector<int> strides,
                         std::vector<int> paddings, nvinfer1::DimsHW *pre_pad,
                         nvinfer1::DimsHW *post_pad, int input_dims) {
N
nhzlx 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
  int input_height = input_shape.d[input_dims - 2];
  int input_width = input_shape.d[input_dims - 1];
  int floor_h_output_size =
      (input_height - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
  int ceil_h_output_size =
      (input_height - ksize[0] + 2 * paddings[0] + strides[0] - 1) /
          strides[0] +
      1;

  int floor_w_output_size =
      (input_width - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
  int ceil_w_output_size =
      (input_width - ksize[1] + 2 * paddings[1] + strides[1] - 1) / strides[1] +
      1;
  if (floor_h_output_size != ceil_h_output_size) {
    post_pad->h() = strides[0] - 1;
  }

  if (floor_w_output_size != ceil_w_output_size) {
    post_pad->w() = strides[1] - 1;
  }
}

N
nhzlx 已提交
58 59 60 61 62
/*
 * Pool2dOp, IPoolingLayer in TRT. This Layer doesn't has weights.
 */
class Pool2dOpConverter : public OpConverter {
 public:
N
nhzlx 已提交
63 64
  void operator()(const framework::proto::OpDesc &op,
                  const framework::Scope &scope, bool test_mode) override {
M
minqiyang 已提交
65
    VLOG(4)
N
nhzlx 已提交
66 67
        << "convert a fluid pool2d op to tensorrt pool2d layer without bias";
    framework::OpDesc op_desc(op, nullptr);
68 69 70 71 72 73 74 75 76
    PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1UL,
                      platform::errors::InvalidArgument(
                          "TRT Pool2d expect 1 input, but got %d input.",
                          op_desc.Input("X").size()));
    PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1UL,
                      platform::errors::InvalidArgument(
                          "TRT Pool2d expect 1 Output, but got %d output.",
                          op_desc.Output("Out").size()));

N
nhzlx 已提交
77 78 79 80
    auto *input1 = engine_->GetITensor(op_desc.Input("X")[0]);
    nvinfer1::Dims input_shape = input1->getDimensions();
    int input_dims = input_shape.nbDims;

81 82
    bool global_pooling =
        BOOST_GET_CONST(bool, op_desc.GetAttr("global_pooling"));
N
nhzlx 已提交
83
    std::string pool_type =
84
        BOOST_GET_CONST(std::string, op_desc.GetAttr("pooling_type"));
N
nhzlx 已提交
85
    std::vector<int> ksize =
86
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("ksize"));
N
nhzlx 已提交
87
    std::vector<int> strides =
88
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("strides"));
N
nhzlx 已提交
89
    std::vector<int> paddings =
90
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("paddings"));
91 92 93
    bool exclusive = op_desc.HasAttr("exclusive")
                         ? BOOST_GET_CONST(bool, op_desc.GetAttr("exclusive"))
                         : true;
94
    bool ceil_mode = BOOST_GET_CONST(bool, op_desc.GetAttr("ceil_mode"));
95 96
    bool adaptive = false;
    if (op_desc.HasAttr("adaptive"))
97
      adaptive = BOOST_GET_CONST(bool, op_desc.GetAttr("adaptive"));
N
nhzlx 已提交
98

N
nhzlx 已提交
99
    nvinfer1::PoolingType nv_pool_type = nvinfer1::PoolingType::kMAX;
100 101
    nvinfer1::ReduceOperation reduce_operation =
        nvinfer1::ReduceOperation::kMAX;
102 103
    plugin::PoolPlugin::PoolType plugin_pool_type =
        plugin::PoolPlugin::PoolType::max;
N
nhzlx 已提交
104
    if (pool_type == "max") {
N
nhzlx 已提交
105
      nv_pool_type = nvinfer1::PoolingType::kMAX;
106
      reduce_operation = nvinfer1::ReduceOperation::kMAX;
107
      plugin_pool_type = plugin::PoolPlugin::PoolType::max;
N
nhzlx 已提交
108
    } else if (pool_type == "avg") {
N
nhzlx 已提交
109
      nv_pool_type = nvinfer1::PoolingType::kAVERAGE;
110
      reduce_operation = nvinfer1::ReduceOperation::kAVG;
111
      plugin_pool_type = plugin::PoolPlugin::PoolType::avg;
N
nhzlx 已提交
112
    } else {
113 114 115
      PADDLE_THROW(platform::errors::Fatal(
          "Wrong pool op type, the trt do not support the %s pool type.",
          pool_type));
N
nhzlx 已提交
116 117
    }

N
nhzlx 已提交
118 119 120 121 122 123
    nvinfer1::DimsHW nv_ksize(ksize[0], ksize[1]);
    nvinfer1::DimsHW nv_strides(strides[0], strides[1]);
    nvinfer1::DimsHW nv_paddings(paddings[0], paddings[1]);

    nvinfer1::ILayer *layer = nullptr;

124 125 126
    if (op_desc.HasAttr("enable_int8")) {
#if IS_TRT_VERSION_GE(5000)
      CHECK(op_desc.HasAttr("X_scale"));
127
      float input_scale = BOOST_GET_CONST(float, op_desc.GetAttr("X_scale"));
128 129 130 131
      engine_->SetTensorDynamicRange(input1, input_scale);
#endif
    }

132
    if (engine_->with_dynamic_shape()) {
133
      if (!adaptive && !global_pooling && !ceil_mode) {
134 135 136 137
        auto *pool_layer = TRT_ENGINE_ADD_LAYER(engine_, Pooling, *input1,
                                                nv_pool_type, nv_ksize);
        pool_layer->setStride(nv_strides);
        pool_layer->setPadding(nv_paddings);
138
        pool_layer->setAverageCountExcludesPadding(exclusive);
139
        layer = pool_layer;
140 141 142 143
      } else if (global_pooling) {
        auto *reduce_layer = TRT_ENGINE_ADD_LAYER(engine_, Reduce, *input1,
                                                  reduce_operation, 12, true);
        layer = reduce_layer;
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
      } else {
#if IS_TRT_VERSION_GE(6000)
        plugin::PoolPluginDynamic *plugin =
            new plugin::PoolPluginDynamic(ceil_mode, pool_type, adaptive, ksize,
                                          strides, paddings, global_pooling);
        layer = engine_->AddPluginV2(&input1, 1, plugin);
#endif
      }
      auto output_name = op_desc.Output("Out")[0];
      layer->setName(("pool2d (Output: " + output_name + ")").c_str());
      layer->getOutput(0)->setName(output_name.c_str());
      engine_->SetITensor(output_name, layer->getOutput(0));
      if (test_mode) {
        engine_->DeclareOutput(output_name);
      }
      return;
    }

N
nhzlx 已提交
162 163 164
    if (global_pooling == true) {
      nv_ksize.d[0] = input_shape.d[input_dims - 2];
      nv_ksize.d[1] = input_shape.d[input_dims - 1];
165
      auto *pool_layer = TRT_ENGINE_ADD_LAYER(
N
nhzlx 已提交
166 167
          engine_, Pooling, *const_cast<nvinfer1::ITensor *>(input1),
          nv_pool_type, nv_ksize);
168
      PADDLE_ENFORCE_NOT_NULL(
169 170
          pool_layer, platform::errors::Fatal(
                          "trt pool layer in converter could not be created."));
N
nhzlx 已提交
171
      auto output_name = op_desc.Output("Out")[0];
172 173 174 175 176 177 178
      pool_layer->setStride(nv_strides);
      pool_layer->setPadding(nv_paddings);
      pool_layer->setAverageCountExcludesPadding(exclusive);
      pool_layer->setName(("pool2d (Output: " + output_name + ")").c_str());
      pool_layer->getOutput(0)->setName(output_name.c_str());
      engine_->SetITensor(output_name, pool_layer->getOutput(0));
      layer = pool_layer;
N
nhzlx 已提交
179
      if (test_mode) {
N
nhzlx 已提交
180
        engine_->DeclareOutput(output_name);
181
      }
N
nhzlx 已提交
182 183
      return;
    }
184

185
    if (!adaptive) {
N
nhzlx 已提交
186 187 188 189
      // Under ceil mode, the pre_pad and post_pad are used to
      // record the the padding size. In some ceil mode cases,
      // we do not need padding, so we initialize the two vars to 0.

N
nhzlx 已提交
190 191
      nvinfer1::DimsHW pre_pad(0, 0);
      nvinfer1::DimsHW post_pad(0, 0);
N
nhzlx 已提交
192 193 194 195 196 197 198 199
      if (ceil_mode) {
        // If ceil mode is true, we will pad the appropriate size to the input.
        DealCeilMode(input_shape, ksize, strides, paddings, &pre_pad, &post_pad,
                     input_dims);
        auto *pad_layer = TRT_ENGINE_ADD_LAYER(
            engine_, Padding, *const_cast<nvinfer1::ITensor *>(input1), pre_pad,
            post_pad);
        PADDLE_ENFORCE_NOT_NULL(
200 201 202
            pad_layer, platform::errors::Fatal(
                           "Pad layer in poolOp converter could not be "
                           "created. The pointer to pad layer is `NULL`."));
N
nhzlx 已提交
203 204 205 206 207
        input1 = pad_layer->getOutput(0);
      }
      auto *pool_layer = TRT_ENGINE_ADD_LAYER(
          engine_, Pooling, *const_cast<nvinfer1::ITensor *>(input1),
          nv_pool_type, nv_ksize);
208 209 210
      PADDLE_ENFORCE_NOT_NULL(
          pool_layer, platform::errors::Fatal(
                          "trt pool layer in converter could not be created."));
N
nhzlx 已提交
211 212
      pool_layer->setStride(nv_strides);
      pool_layer->setPadding(nv_paddings);
213
      pool_layer->setAverageCountExcludesPadding(exclusive);
N
nhzlx 已提交
214 215 216 217 218 219 220 221
      layer = pool_layer;
    } else {
      // Average pooling needs to exclude the padding pixels from the average
      // mean.
      // It is not supported well by TRT, we use a plugin here.
      std::vector<int> input_shape_v;
      for (int i = 0; i < input_dims; i++) {
        input_shape_v.push_back(input_shape.d[i]);
222
      }
223 224 225 226
      plugin::PoolPlugin *plugin =
          new plugin::PoolPlugin(ceil_mode, plugin_pool_type, adaptive, ksize,
                                 strides, paddings, input_shape_v);
      auto *pool_layer = engine_->AddPlugin(&input1, 1, plugin);
227 228 229 230
      PADDLE_ENFORCE_NOT_NULL(
          pool_layer,
          platform::errors::Fatal(
              "trt pool plugin layer in converter could not be created."));
231
      layer = pool_layer;
232
    }
N
nhzlx 已提交
233
    auto output_name = op_desc.Output("Out")[0];
234
    RreplenishLayerAndOutput(layer, "pool2d", {output_name}, test_mode);
N
nhzlx 已提交
235 236 237 238 239 240 241 242 243
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

USE_OP(pool2d);
REGISTER_TRT_OP_CONVERTER(pool2d, Pool2dOpConverter);