test_dist_base.py 11.1 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
X
Xin Pan 已提交
16 17 18 19 20
import time

import unittest
import os
import sys
M
minqiyang 已提交
21
import six
X
Xin Pan 已提交
22 23
import signal
import subprocess
T
typhoonzero 已提交
24 25 26 27 28 29 30 31 32
import six


class TestDistRunnerBase(object):
    def get_model(self, batch_size=2):
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

    def get_transpiler(self, trainer_id, main_program, pserver_endpoints,
W
Wu Yi 已提交
33
                       trainers, sync_mode):
T
typhoonzero 已提交
34 35 36 37 38 39 40 41
        # NOTE: import fluid until runtime, or else forking processes will cause error.
        import paddle
        import paddle.fluid as fluid
        t = fluid.DistributeTranspiler()
        t.transpile(
            trainer_id=trainer_id,
            program=main_program,
            pservers=pserver_endpoints,
W
Wu Yi 已提交
42 43
            trainers=trainers,
            sync_mode=sync_mode)
T
typhoonzero 已提交
44 45
        return t

W
Wu Yi 已提交
46 47 48 49 50 51
    def run_pserver(self,
                    pserver_endpoints,
                    trainers,
                    current_endpoint,
                    trainer_id,
                    sync_mode=True):
T
typhoonzero 已提交
52 53 54 55 56
        import paddle
        import paddle.fluid as fluid
        self.get_model(batch_size=2)
        t = self.get_transpiler(trainer_id,
                                fluid.default_main_program(), pserver_endpoints,
W
Wu Yi 已提交
57
                                trainers, sync_mode)
T
typhoonzero 已提交
58 59 60 61 62 63 64
        pserver_prog = t.get_pserver_program(current_endpoint)
        startup_prog = t.get_startup_program(current_endpoint, pserver_prog)
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
        exe.run(pserver_prog)

W
Wu Yi 已提交
65 66 67 68 69 70 71
    def run_trainer(self,
                    place,
                    endpoints,
                    trainer_id,
                    trainers,
                    is_dist=True,
                    sync_mode=True):
T
typhoonzero 已提交
72 73 74 75 76 77 78
        import paddle
        import paddle.fluid as fluid
        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
        self.get_model(batch_size=2)
        if is_dist:
            t = self.get_transpiler(trainer_id,
                                    fluid.default_main_program(), endpoints,
W
Wu Yi 已提交
79
                                    trainers, sync_mode)
T
typhoonzero 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
            trainer_prog = t.get_trainer_program()
        else:
            trainer_prog = fluid.default_main_program()

        startup_exe = fluid.Executor(place)
        startup_exe.run(fluid.default_startup_program())

        strategy = fluid.ExecutionStrategy()
        strategy.num_threads = 1
        strategy.allow_op_delay = False
        exe = fluid.ParallelExecutor(
            True, loss_name=avg_cost.name, exec_strategy=strategy)

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = test_reader()

        data = next(reader_generator)
        first_loss, = exe.run(fetch_list=[avg_cost.name],
                              feed=feeder.feed(data))
        print(first_loss)

        for i in six.moves.xrange(5):
            data = next(reader_generator)
            loss, = exe.run(fetch_list=[avg_cost.name], feed=feeder.feed(data))

        data = next(reader_generator)
        last_loss, = exe.run(fetch_list=[avg_cost.name], feed=feeder.feed(data))
        print(last_loss)


def runtime_main(test_class):
    import paddle
    import paddle.fluid as fluid
    import paddle.fluid.core as core

W
Wu Yi 已提交
120
    if len(sys.argv) != 8:
T
typhoonzero 已提交
121
        print(
W
Wu Yi 已提交
122
            "Usage: python dist_se_resnext.py [pserver/trainer] [endpoints] [trainer_id] [current_endpoint] [trainers] [is_dist] [sync_mode]"
T
typhoonzero 已提交
123 124 125 126 127 128 129
        )
    role = sys.argv[1]
    endpoints = sys.argv[2]
    trainer_id = int(sys.argv[3])
    current_endpoint = sys.argv[4]
    trainers = int(sys.argv[5])
    is_dist = True if sys.argv[6] == "TRUE" else False
W
Wu Yi 已提交
130
    sync_mode = True if sys.argv[7] == "TRUE" else False
T
typhoonzero 已提交
131 132 133

    model = test_class()
    if role == "pserver":
W
Wu Yi 已提交
134 135
        model.run_pserver(endpoints, trainers, current_endpoint, trainer_id,
                          sync_mode)
T
typhoonzero 已提交
136 137 138
    else:
        p = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()
W
Wu Yi 已提交
139 140
        model.run_trainer(p, endpoints, trainer_id, trainers, is_dist,
                          sync_mode)
X
Xin Pan 已提交
141

M
minqiyang 已提交
142

M
minqiyang 已提交
143
import paddle.compat as cpt
M
minqiyang 已提交
144

X
Xin Pan 已提交
145 146

class TestDistBase(unittest.TestCase):
W
Wu Yi 已提交
147 148 149
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

X
Xin Pan 已提交
150 151 152 153 154
    def setUp(self):
        self._trainers = 2
        self._pservers = 2
        self._ps_endpoints = "127.0.0.1:9123,127.0.0.1:9124"
        self._python_interp = "python"
W
Wu Yi 已提交
155 156
        self._sync_mode = True
        self._setup_config()
X
Xin Pan 已提交
157

G
gongweibao 已提交
158
    def start_pserver(self, model_file, check_error_log):
W
Wu Yi 已提交
159
        sync_mode_str = "TRUE" if self._sync_mode else "FALSE"
X
Xin Pan 已提交
160
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
W
Wu Yi 已提交
161
        ps0_cmd = "%s %s pserver %s 0 %s %d TRUE %s" % \
X
Xin Pan 已提交
162
            (self._python_interp, model_file, self._ps_endpoints, ps0_ep,
W
Wu Yi 已提交
163 164
             self._trainers, sync_mode_str)
        ps1_cmd = "%s %s pserver %s 0 %s %d TRUE %s" % \
X
Xin Pan 已提交
165
            (self._python_interp, model_file, self._ps_endpoints, ps1_ep,
W
Wu Yi 已提交
166
             self._trainers, sync_mode_str)
X
Xin Pan 已提交
167

G
gongweibao 已提交
168 169 170 171 172 173 174 175
        ps0_pipe = subprocess.PIPE
        ps1_pipe = subprocess.PIPE
        if check_error_log:
            print("ps0_cmd:", ps0_cmd)
            print("ps1_cmd:", ps1_cmd)
            ps0_pipe = open("/tmp/ps0_err.log", "wb")
            ps1_pipe = open("/tmp/ps1_err.log", "wb")

X
Xin Pan 已提交
176
        ps0_proc = subprocess.Popen(
G
gongweibao 已提交
177
            ps0_cmd.split(" "), stdout=subprocess.PIPE, stderr=ps0_pipe)
X
Xin Pan 已提交
178
        ps1_proc = subprocess.Popen(
G
gongweibao 已提交
179 180 181 182 183 184
            ps1_cmd.split(" "), stdout=subprocess.PIPE, stderr=ps1_pipe)

        if not check_error_log:
            return ps0_proc, ps1_proc, None, None
        else:
            return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe
X
Xin Pan 已提交
185 186

    def _wait_ps_ready(self, pid):
X
polish  
Xin Pan 已提交
187
        retry_times = 50
X
Xin Pan 已提交
188 189 190 191 192 193 194 195
        while True:
            assert retry_times >= 0, "wait ps ready failed"
            time.sleep(3)
            try:
                # the listen_and_serv_op would touch a file which contains the listen port
                # on the /tmp directory until it was ready to process all the RPC call.
                os.stat("/tmp/paddle.%d.port" % pid)
                return
X
polish  
Xin Pan 已提交
196 197 198
            except os.error as e:
                sys.stderr.write('waiting for pserver: %s, left retry %d\n' %
                                 (e, retry_times))
X
Xin Pan 已提交
199 200
                retry_times -= 1

G
gongweibao 已提交
201
    def check_with_place(self, model_file, delta=1e-3, check_error_log=False):
X
Xin Pan 已提交
202 203 204 205 206
        # *ATTENTION* THIS TEST NEEDS AT LEAST 2GPUS TO RUN
        required_envs = {
            "PATH": os.getenv("PATH"),
            "PYTHONPATH": os.getenv("PYTHONPATH"),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH"),
W
Wu Yi 已提交
207 208
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
            "FLAGS_cudnn_deterministic": "1"
X
Xin Pan 已提交
209
        }
G
gongweibao 已提交
210 211 212 213 214

        if check_error_log:
            required_envs["GLOG_v"] = "7"
            required_envs["GLOG_logtostderr"] = "1"

X
Xin Pan 已提交
215
        # Run local to get a base line
X
clean  
Xin Pan 已提交
216
        env_local = {"CUDA_VISIBLE_DEVICES": "0"}
X
Xin Pan 已提交
217
        env_local.update(required_envs)
W
Wu Yi 已提交
218 219
        sync_mode_str = "TRUE" if self._sync_mode else "FALSE"
        local_cmd = "%s %s trainer %s 0 %s %d FLASE %s" % \
X
Xin Pan 已提交
220
            (self._python_interp, model_file,
W
Wu Yi 已提交
221
             "127.0.0.1:1234", "127.0.0.1:1234", 1, sync_mode_str)
G
gongweibao 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
        if not check_error_log:
            local_proc = subprocess.Popen(
                local_cmd.split(" "),
                stdout=subprocess.PIPE,
                stderr=subprocess.PIPE,
                env=env_local)
        else:
            print("trainer cmd:", local_cmd)
            err_log = open("/tmp/trainer.err.log", "wb")
            local_proc = subprocess.Popen(
                local_cmd.split(" "),
                stdout=subprocess.PIPE,
                stderr=err_log,
                env=env_local)

X
Xin Pan 已提交
237 238
        local_proc.wait()
        out, err = local_proc.communicate()
M
minqiyang 已提交
239
        local_ret = cpt.to_text(out)
X
Xin Pan 已提交
240 241 242 243
        sys.stderr.write('local_loss: %s\n' % local_ret)
        sys.stderr.write('local_stderr: %s\n' % err)

        # Run dist train to compare with local results
G
gongweibao 已提交
244 245
        ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(model_file,
                                                          check_error_log)
X
Xin Pan 已提交
246 247 248 249
        self._wait_ps_ready(ps0.pid)
        self._wait_ps_ready(ps1.pid)

        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
W
Wu Yi 已提交
250
        tr0_cmd = "%s %s trainer %s 0 %s %d TRUE %s" % \
X
Xin Pan 已提交
251
            (self._python_interp, model_file, self._ps_endpoints, ps0_ep,
W
Wu Yi 已提交
252 253
             self._trainers, sync_mode_str)
        tr1_cmd = "%s %s trainer %s 1 %s %d TRUE %s" % \
X
Xin Pan 已提交
254
            (self._python_interp, model_file, self._ps_endpoints, ps1_ep,
W
Wu Yi 已提交
255
             self._trainers, sync_mode_str)
X
Xin Pan 已提交
256

X
clean  
Xin Pan 已提交
257 258
        env0 = {"CUDA_VISIBLE_DEVICES": "0"}
        env1 = {"CUDA_VISIBLE_DEVICES": "1"}
X
Xin Pan 已提交
259 260 261 262
        env0.update(required_envs)
        env1.update(required_envs)
        FNULL = open(os.devnull, 'w')

G
gongweibao 已提交
263 264 265 266 267 268 269 270
        tr0_pipe = subprocess.PIPE
        tr1_pipe = subprocess.PIPE
        if check_error_log:
            print("tr0_cmd:", tr0_cmd)
            print("tr1_cmd:", tr1_cmd)
            tr0_pipe = open("/tmp/tr0_err.log", "wb")
            tr1_pipe = open("/tmp/tr1_err.log", "wb")

X
Xin Pan 已提交
271 272 273
        tr0_proc = subprocess.Popen(
            tr0_cmd.split(" "),
            stdout=subprocess.PIPE,
G
gongweibao 已提交
274
            stderr=tr0_pipe,
X
Xin Pan 已提交
275 276 277 278
            env=env0)
        tr1_proc = subprocess.Popen(
            tr1_cmd.split(" "),
            stdout=subprocess.PIPE,
G
gongweibao 已提交
279
            stderr=tr1_pipe,
X
Xin Pan 已提交
280 281 282 283 284 285
            env=env1)

        tr0_proc.wait()
        tr1_proc.wait()
        out, err = tr0_proc.communicate()
        sys.stderr.write('dist_stderr: %s\n' % err)
M
minqiyang 已提交
286
        loss_data0 = cpt.to_text(out)
X
Xin Pan 已提交
287 288 289 290 291 292 293 294 295
        sys.stderr.write('dist_loss: %s\n' % loss_data0)
        lines = loss_data0.split("\n")
        dist_first_loss = eval(lines[0].replace(" ", ","))[0]
        dist_last_loss = eval(lines[1].replace(" ", ","))[0]

        local_lines = local_ret.split("\n")
        local_first_loss = eval(local_lines[0])[0]
        local_last_loss = eval(local_lines[1])[0]

G
gongweibao 已提交
296 297 298 299 300 301 302
        # close trainer file
        if check_error_log:
            tr0_pipe.close()
            tr1_pipe.close()

            ps0_pipe.close()
            ps1_pipe.close()
T
typhoonzero 已提交
303
        # FIXME: use terminate() instead of sigkill.
X
Xin Pan 已提交
304 305 306
        os.kill(ps0.pid, signal.SIGKILL)
        os.kill(ps1.pid, signal.SIGKILL)
        FNULL.close()
T
typhoonzero 已提交
307 308 309

        self.assertAlmostEqual(local_first_loss, dist_first_loss, delta=delta)
        self.assertAlmostEqual(local_last_loss, dist_last_loss, delta=delta)