analysis_predictor.h 12.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#pragma once
16 17
#include <algorithm>
#include <map>
N
nhzlx 已提交
18
#include <memory>
19 20
#include <string>
#include <vector>
21
#include "paddle/fluid/framework/naive_executor.h"
22
#include "paddle/fluid/framework/op_compatible_info.h"
Y
Yan Chunwei 已提交
23 24
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/api/api_impl.h"
Y
Yan Chunwei 已提交
25
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
N
nhzlx 已提交
26
#include "paddle/fluid/inference/api/helper.h"
Y
Yan Chunwei 已提交
27
#include "paddle/fluid/inference/api/paddle_inference_api.h"
28
#include "paddle/fluid/platform/float16.h"
29
#include "paddle/fluid/string/printf.h"
30 31 32 33
#ifdef PADDLE_WITH_TESTING
#include <gtest/gtest.h>
#include <gtest/gtest_prod.h>
#endif
34

35 36 37
namespace paddle_infer {
using float16 = paddle::platform::float16;
}
38 39 40 41 42 43 44 45 46 47 48
///
/// \file analysis_predictor.h
///
/// \brief Compared to NativePredictor, AnalysisPredictor is a high-performance
/// predictor that includes many optimizations
///
/// \author paddle-infer@baidu.com
/// \date 2020-01-01
/// \since 1.7.0
///

Y
Yan Chunwei 已提交
49 50 51 52 53
namespace paddle {

using inference::analysis::Argument;
using inference::analysis::Analyzer;
using framework::proto::ProgramDesc;
54
using framework::NaiveExecutor;
Y
Yan Chunwei 已提交
55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
///
/// \class AnalysisPredictor
///
/// \brief The analysis predictor is based on the original native predictor with
/// IR and Analysis support. It will optimize IR and Parameters in the runtime.
///
/// The predictor has the following typical uses:
///
/// Get predictor
/// \code{cpp}
///   auto predictor = CreatePaddlePredictor(config);
/// \endcode
///
/// Get input or output names
/// \code{cpp}
///   auto input_names = predictor->GetInputNames();
///   auto output_names = predictor->GetOutputNames();
/// \endcode
///
/// Get input or output tensors
/// \code{cpp}
///   auto input_t = predictor->GetInputTensor(input_names[0]);
///   auto output_t = predictor->GetOutputTensor(output_names[0]);
/// \endcode
///
/// Run predictor
/// \code{cpp}
///   predictor->ZeroCopyRun();
/// \endcode
///
86
class AnalysisPredictor : public PaddlePredictor {
Y
Yan Chunwei 已提交
87
 public:
88 89 90 91 92
  ///
  /// \brief Construct a new Analysis Predictor object
  ///
  /// \param[in] AnalysisConfig config
  ///
93 94 95
  explicit AnalysisPredictor(const AnalysisConfig &config) : config_(config) {
    predictor_id_ = inference::GetUniqueId();
  }
96 97 98
  ///
  /// \brief Destroy the Analysis Predictor object
  ///
F
flame 已提交
99
  ~AnalysisPredictor();
Y
Yan Chunwei 已提交
100

101 102 103 104 105 106 107 108 109 110 111 112
  ///
  /// \brief Initialize predictor
  ///
  /// Initializing predictor mainly includes the following tasks:
  /// preparing scope, creating executor, preparing program, initializing the
  /// variables required by the executor, getting the feed_target_names and
  /// fetch_target_names, etc.
  ///
  /// \param[in] parent_scope parent scope
  /// \param[in] program program
  /// \return Whether the init function executed successfully
  ///
113 114
  bool Init(const std::shared_ptr<framework::Scope> &parent_scope,
            const std::shared_ptr<framework::ProgramDesc> &program = nullptr);
Y
Yan Chunwei 已提交
115

116 117 118 119 120 121 122 123
  ///
  /// \brief Run the prediction engine. Deprecated. Please refer to ZeroCopyRun
  ///
  /// \param[in] inputs input tensors
  /// \param[out] output_data output tensors
  /// \param[in] batch_size data's batch size
  /// \return Whether the function executed successfully
  ///
124 125 126 127
  bool Run(const std::vector<PaddleTensor> &inputs,
           std::vector<PaddleTensor> *output_data,
           int batch_size = -1) override;

128 129 130 131 132
  ///
  /// \brief Get the input names
  ///
  /// \return input names
  ///
N
nhzlx 已提交
133
  std::vector<std::string> GetInputNames();
134 135 136 137 138
  ///
  /// \brief Get the output names
  ///
  /// \return output names
  ///
N
nhzlx 已提交
139 140
  std::vector<std::string> GetOutputNames();

141 142 143 144 145 146
  ///
  /// \brief Get the Input Tensor object
  ///
  /// \param[in] name input name
  /// \return input tensor
  ///
147 148
  std::unique_ptr<ZeroCopyTensor> GetInputTensor(
      const std::string &name) override;
149 150 151 152 153 154
  ///
  /// \brief Get the Output Tensor object
  ///
  /// \param[in] name otuput name
  /// \return output tensor
  ///
155 156
  std::unique_ptr<ZeroCopyTensor> GetOutputTensor(
      const std::string &name) override;
157 158 159 160 161
  ///
  /// \brief Get all input names and their corresponding shapes
  ///
  /// \return the map of input names and shapes
  ///
162 163
  std::map<std::string, std::vector<int64_t>> GetInputTensorShape() override;

164 165 166 167 168
  ///
  /// \brief Run the prediction engine
  ///
  /// \return Whether the function executed successfully
  ///
169 170
  bool ZeroCopyRun() override;

171 172 173 174 175
  ///
  /// \brief Create feed fetch variables
  ///
  /// \param[in] scope Scope needed to create variables
  ///
176
  void CreateFeedFetchVar(framework::Scope *scope);
177 178 179 180
  ///
  /// \brief Determine the model's inputs and outputs based on the program's
  /// feed fetch op
  ///
181
  void PrepareFeedFetch();
Y
Yan Chunwei 已提交
182

183 184 185 186
  ///
  /// \brief Set predictor's argument according to config, which mainly includes
  /// execution information and graph optimization related pass information
  ///
187
  void PrepareArgument();
188 189 190 191
  ///
  /// \brief According to argument information, execute the relevant pass
  /// to get the optimized model program
  ///
Y
Yan Chunwei 已提交
192 193
  void OptimizeInferenceProgram();

194 195 196 197 198 199
  ///
  /// \brief Clear the intermediate tensors of the predictor
  ///
  ///
  void ClearIntermediateTensor();

200 201 202 203 204 205 206 207 208 209 210
  ///
  /// \brief Release all tmp tensor to compress the size of the memory pool.
  /// The memory pool is considered to be composed of a list of chunks, if
  /// the chunk is not occupied, it can be released.
  ///
  /// \return Number of bytes released. It may be smaller than the actual
  /// released memory, because part of the memory is not managed by the
  /// MemoryPool.
  ///
  uint64_t TryShrinkMemory() override;

211 212 213 214 215
  ///
  /// \brief Get the argument used by predictor
  ///
  /// \return the argument obtained by config
  ///
216
  Argument &analysis_argument() { return argument_; }
217 218 219 220 221
  ///
  /// \brief Clone to get the new predictor. thread safe.
  ///
  /// \return get a new predictor
  ///
222
  std::unique_ptr<PaddlePredictor> Clone() override;
223 224 225 226 227
  ///
  /// \brief Get the scope used by predictor
  ///
  /// \return scope
  ///
228
  framework::Scope *scope() { return scope_.get(); }
229 230 231 232 233
  ///
  /// \brief Get the inference program
  ///
  /// \return the inference program
  ///
234 235
  framework::ProgramDesc &program() { return *inference_program_; }

236 237 238 239 240
  ///
  /// \brief Get the serialized program
  ///
  /// \return the serialized program
  ///
241
  std::string GetSerializedProgram() const override;
Y
Yan Chunwei 已提交
242

243 244 245 246 247
  ///
  /// \brief Initialize mkldnn quantizer and execute mkldnn quantization pass
  ///
  /// \return Whether the function executed successfully
  ///
248 249
  bool MkldnnQuantize();

250 251 252 253 254
  ///
  /// \brief save program to model and save parameters to params
  ///
  /// \param[in] dir path to save the model
  ///
255 256
  void SaveOptimModel(const std::string &dir);

257
 protected:
258 259 260 261 262 263 264
  ///
  /// \brief Prepare predictor's required programs, including loading model
  /// information, graph optimization, and executor creation variables, etc.
  ///
  /// \param[in] program paddle program
  /// \return Whether the function executed successfully
  ///
265
  bool PrepareProgram(const std::shared_ptr<framework::ProgramDesc> &program);
266 267 268 269 270 271
  ///
  /// \brief Prepare scope environment, each predictor has its own scope
  ///
  /// \param[in] parent_scope The scope of the predictor to be cloned, or null
  /// \return Whether the function executed successfully
  ///
272
  bool PrepareScope(const std::shared_ptr<framework::Scope> &parent_scope);
273 274 275 276 277
  ///
  /// \brief Create an Executor object
  ///
  /// \return Whether the function executed successfully
  ///
278
  bool CreateExecutor();
279 280 281 282 283
  ///
  /// \brief According to the model's program, the executor creates ops
  ///
  /// \return Whether the function executed successfully
  ///
284 285
  bool PrepareExecutor();

286 287 288 289 290
  ///
  /// \brief Load model program.
  ///
  /// \return Whether the function executed successfully
  ///
291
  bool LoadProgramDesc();
292 293 294 295 296
  ///
  /// \brief Load model parameters.
  ///
  /// \return Whether the function executed successfully
  ///
297
  bool LoadParameters();
298

299 300 301 302 303 304 305
  ///
  /// \brief Prepare input data, only used in Run()
  ///
  /// \param[in] input_datas inpute tensors
  /// \param[in] scope the scope used by predictor
  /// \return Whether the function executed successfully
  ///
306 307
  bool SetFeed(const std::vector<PaddleTensor> &input_datas,
               framework::Scope *scope);
308 309 310 311 312 313 314
  ///
  /// \brief Get the output data, only used in Run()
  ///
  /// \param[out] output_data output tensors
  /// \param[in] scope the scope used by predictor
  /// \return Whether the function executed successfully
  ///
315 316
  bool GetFetch(std::vector<PaddleTensor> *output_data,
                framework::Scope *scope);
317 318 319 320 321 322
  ///
  /// \brief Get the output data, only used in GetFetch()
  ///
  /// \param[in] tensor for fetch op
  /// \param[out] output_data output tensor
  ///
323 324 325
  template <typename T>
  void GetFetchOne(const framework::LoDTensor &fetchs,
                   PaddleTensor *output_data);
326 327 328 329 330 331 332 333
  ///
  /// \brief PreSet for Mkldnn multi-thread and dynamic shape input.
  ///
  /// Used in AnalysisPredictor::Run(), do not support
  /// AnalysisPredictor::ZeroCopyRun() now.
  ///
  /// \param[in] inputs tensors
  ///
334
  void MkldnnPreSet(const std::vector<PaddleTensor> &inputs);
W
Wilber 已提交
335 336 337 338 339 340 341 342 343 344 345

  ///
  /// \brief PreSet for Mkldnn multi-thread and dynamic shape input.
  ///
  /// Used in AnalysisPredictor::Run(), do not support
  /// AnalysisPredictor::ZeroCopyRun() now.
  ///
  /// \param[in] inputs tensor shape
  ///
  void MkldnnPreSet(const std::vector<std::vector<int>> &inputs_shape);

346 347 348 349 350 351
  ///
  /// \brief PostReset for Mkldnn multi-thread and dynamic shape input.
  ///
  /// Used in AnalysisPredictor::Run(), do not support
  /// AnalysisPredictor::ZeroCopyRun() now.
  ///
352
  void MkldnnPostReset();
Y
Yan Chunwei 已提交
353

N
nhzlx 已提交
354
#if PADDLE_WITH_TENSORRT
355 356 357 358 359 360 361 362 363 364 365 366 367 368
  ///
  /// \brief save calibration table
  ///
  /// When we use Paddle-TRT INT8 engine, we need to generate calibration table
  /// data first,
  /// the calibration table contains the range for each op's input and output,
  /// this whole process can be divided into several steps:
  /// 1. Builds a 32-bit engine, runs it on the calibration set, and records a
  ///  histogram for each tensor of the distribution of activation values.
  /// 2. Builds a calibration table from the histograms.
  /// After step 2, we need to store the calibration table on disk.
  ///
  /// \return Whether the function executed successfully
  ///
N
nhzlx 已提交
369
  bool SaveTrtCalibToDisk();
N
nhzlx 已提交
370
#endif
N
nhzlx 已提交
371

372 373 374 375 376 377 378 379
// Some more detailed tests, they are made the friends of the predictor, so that
// the all the details can be tested.
#if PADDLE_WITH_TESTING
  FRIEND_TEST(AnalysisPredictor, analysis_off);
  FRIEND_TEST(AnalysisPredictor, analysis_on);
  FRIEND_TEST(AnalysisPredictor, with_gpu);
#endif

Y
Yan Chunwei 已提交
380
 private:
381
  AnalysisConfig config_;
Y
Yan Chunwei 已提交
382
  Argument argument_;
383 384 385 386 387
  std::unique_ptr<NaiveExecutor> executor_;
  platform::Place place_;
  std::shared_ptr<framework::Scope> scope_;
  framework::Scope *sub_scope_{nullptr};
  std::shared_ptr<framework::ProgramDesc> inference_program_;
388
  framework::OpCompatibleMap op_compatible_map_;
389 390
  std::vector<framework::OpDesc *> feeds_;
  std::map<std::string, size_t> feed_names_;
N
nhzlx 已提交
391 392
  // Sorted according to the idx.
  std::map<size_t, std::string> idx2feeds_;
Y
Yan Chunwei 已提交
393
  std::vector<framework::OpDesc *> fetches_;
N
nhzlx 已提交
394 395
  std::map<size_t, std::string> idx2fetches_;

396 397 398 399 400 401 402 403 404 405
#if PADDLE_WITH_MKLDNN
  // Helper class to perform quantization
  class MkldnnQuantizer;
  MkldnnQuantizer *mkldnn_quantizer_{nullptr};

#if PADDLE_WITH_TESTING
  friend class MkldnnQuantizerTest;
#endif
#endif

406
  // Memory buffer for feed inputs. The temporary LoDTensor will cause serious
407
  // concurrency problems, wrong results and memory leak, so cache them.
408
  std::vector<framework::LoDTensor> feed_tensors_;
Y
Yan Chunwei 已提交
409
  details::TensorArrayBatchCleaner tensor_array_batch_cleaner_;
Y
Yan Chunwei 已提交
410 411
  // A mutex help to make Clone thread safe.
  std::mutex clone_mutex_;
412

Y
Yan Chunwei 已提交
413 414 415 416
  // For memory optimization.
  const size_t max_shape_collect_count_{1000};
  int need_collect_var_shapes_{-1};  // -1 for default, 0 for false, 1 for true.
  std::vector<std::map<std::string, std::vector<int>>> batch_var_shapes_;
417
  int predictor_id_;
Y
Yan Chunwei 已提交
418

419 420 421
 private:
  // Some status here that help to determine the status inside the predictor.
  bool status_is_cloned_{false};
Y
Yan Chunwei 已提交
422 423 424
};

}  // namespace paddle