Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
0129f4b5
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0129f4b5
编写于
3月 27, 2020
作者:
W
Wilber
提交者:
GitHub
3月 27, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add some inference API comments for AnalysisPredictor (#23242)
* add inference api doc. test=develop
上级
c8f9e66b
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
357 addition
and
51 deletion
+357
-51
paddle/fluid/inference/api/analysis_predictor.h
paddle/fluid/inference/api/analysis_predictor.h
+241
-26
paddle/fluid/inference/api/paddle_mkldnn_quantizer_config.h
paddle/fluid/inference/api/paddle_mkldnn_quantizer_config.h
+116
-25
未找到文件。
paddle/fluid/inference/api/analysis_predictor.h
浏览文件 @
0129f4b5
...
...
@@ -30,6 +30,18 @@
#include <gtest/gtest.h>
#include <gtest/gtest_prod.h>
#endif
///
/// \file analysis_predictor.h
///
/// \brief Compared to NativePredictor, AnalysisPredictor is a high-performance
/// predictor that includes many optimizations
///
/// \author paddle-infer@baidu.com
/// \date 2020-01-01
/// \since 1.7.0
///
namespace
paddle
{
using
inference
::
analysis
::
Argument
;
...
...
@@ -37,95 +49,298 @@ using inference::analysis::Analyzer;
using
framework
::
proto
::
ProgramDesc
;
using
framework
::
NaiveExecutor
;
/** \brief This predictor is based on the original native predictor with IR and
* Analysis support.
*
* It will optimize IR and Parameters in the runtime.
*
* TODO(Superjomn) Replace the Navive predictor?
*/
///
/// \class AnalysisPredictor
///
/// \brief The analysis predictor is based on the original native predictor with
/// IR and Analysis support. It will optimize IR and Parameters in the runtime.
///
/// The predictor has the following typical uses:
///
/// Get predictor
/// \code{cpp}
/// auto predictor = CreatePaddlePredictor(config);
/// \endcode
///
/// Get input or output names
/// \code{cpp}
/// auto input_names = predictor->GetInputNames();
/// auto output_names = predictor->GetOutputNames();
/// \endcode
///
/// Get input or output tensors
/// \code{cpp}
/// auto input_t = predictor->GetInputTensor(input_names[0]);
/// auto output_t = predictor->GetOutputTensor(output_names[0]);
/// \endcode
///
/// Run predictor
/// \code{cpp}
/// predictor->ZeroCopyRun();
/// \endcode
///
class
AnalysisPredictor
:
public
PaddlePredictor
{
public:
///
/// \brief Construct a new Analysis Predictor object
///
/// \param[in] AnalysisConfig config
///
explicit
AnalysisPredictor
(
const
AnalysisConfig
&
config
)
:
config_
(
config
)
{
predictor_id_
=
inference
::
GetUniqueId
();
}
///
/// \brief Destroy the Analysis Predictor object
///
~
AnalysisPredictor
();
///
/// \brief Initialize predictor
///
/// Initializing predictor mainly includes the following tasks:
/// preparing scope, creating executor, preparing program, initializing the
/// variables required by the executor, getting the feed_target_names and
/// fetch_target_names, etc.
///
/// \param[in] parent_scope parent scope
/// \param[in] program program
/// \return Whether the init function executed successfully
///
bool
Init
(
const
std
::
shared_ptr
<
framework
::
Scope
>
&
parent_scope
,
const
std
::
shared_ptr
<
framework
::
ProgramDesc
>
&
program
=
nullptr
);
///
/// \brief Run the prediction engine. Deprecated. Please refer to ZeroCopyRun
///
/// \param[in] inputs input tensors
/// \param[out] output_data output tensors
/// \param[in] batch_size data's batch size
/// \return Whether the function executed successfully
///
bool
Run
(
const
std
::
vector
<
PaddleTensor
>
&
inputs
,
std
::
vector
<
PaddleTensor
>
*
output_data
,
int
batch_size
=
-
1
)
override
;
///
/// \brief Get the input names
///
/// \return input names
///
std
::
vector
<
std
::
string
>
GetInputNames
();
///
/// \brief Get the output names
///
/// \return output names
///
std
::
vector
<
std
::
string
>
GetOutputNames
();
///
/// \brief Get the Input Tensor object
///
/// \param[in] name input name
/// \return input tensor
///
std
::
unique_ptr
<
ZeroCopyTensor
>
GetInputTensor
(
const
std
::
string
&
name
)
override
;
///
/// \brief Get the Output Tensor object
///
/// \param[in] name otuput name
/// \return output tensor
///
std
::
unique_ptr
<
ZeroCopyTensor
>
GetOutputTensor
(
const
std
::
string
&
name
)
override
;
///
/// \brief Get all input names and their corresponding shapes
///
/// \return the map of input names and shapes
///
std
::
map
<
std
::
string
,
std
::
vector
<
int64_t
>>
GetInputTensorShape
()
override
;
///
/// \brief Run the prediction engine
///
/// \return Whether the function executed successfully
///
bool
ZeroCopyRun
()
override
;
///
/// \brief Create feed fetch variables
///
/// \param[in] scope Scope needed to create variables
///
void
CreateFeedFetchVar
(
framework
::
Scope
*
scope
);
///
/// \brief Determine the model's inputs and outputs based on the program's
/// feed fetch op
///
void
PrepareFeedFetch
();
///
/// \brief Set predictor's argument according to config, which mainly includes
/// execution information and graph optimization related pass information
///
void
PrepareArgument
();
///
/// \brief According to argument information, execute the relevant pass
/// to get the optimized model program
///
void
OptimizeInferenceProgram
();
///
/// \brief Get the argument used by predictor
///
/// \return the argument obtained by config
///
Argument
&
analysis_argument
()
{
return
argument_
;
}
///
/// \brief Clone to get the new predictor. thread safe.
///
/// \return get a new predictor
///
std
::
unique_ptr
<
PaddlePredictor
>
Clone
()
override
;
///
/// \brief Get the scope used by predictor
///
/// \return scope
///
framework
::
Scope
*
scope
()
{
return
scope_
.
get
();
}
///
/// \brief Get the inference program
///
/// \return the inference program
///
framework
::
ProgramDesc
&
program
()
{
return
*
inference_program_
;
}
///
/// \brief Get the serialized program
///
/// \return the serialized program
///
std
::
string
GetSerializedProgram
()
const
override
;
///
/// \brief Initialize mkldnn quantizer and execute mkldnn quantization pass
///
/// \return Whether the function executed successfully
///
bool
MkldnnQuantize
();
// save program to model
// save parameters to params
///
/// \brief save program to model and save parameters to params
///
/// \param[in] dir path to save the model
///
void
SaveOptimModel
(
const
std
::
string
&
dir
);
protected:
///
/// \brief Prepare predictor's required programs, including loading model
/// information, graph optimization, and executor creation variables, etc.
///
/// \param[in] program paddle program
/// \return Whether the function executed successfully
///
bool
PrepareProgram
(
const
std
::
shared_ptr
<
framework
::
ProgramDesc
>
&
program
);
///
/// \brief Prepare scope environment, each predictor has its own scope
///
/// \param[in] parent_scope The scope of the predictor to be cloned, or null
/// \return Whether the function executed successfully
///
bool
PrepareScope
(
const
std
::
shared_ptr
<
framework
::
Scope
>
&
parent_scope
);
///
/// \brief Create an Executor object
///
/// \return Whether the function executed successfully
///
bool
CreateExecutor
();
///
/// \brief According to the model's program, the executor creates ops
///
/// \return Whether the function executed successfully
///
bool
PrepareExecutor
();
///
/// \brief Load model program.
///
/// \return Whether the function executed successfully
///
bool
LoadProgramDesc
();
///
/// \brief Load model parameters.
///
/// \return Whether the function executed successfully
///
bool
LoadParameters
();
///
/// \brief Prepare input data, only used in Run()
///
/// \param[in] input_datas inpute tensors
/// \param[in] scope the scope used by predictor
/// \return Whether the function executed successfully
///
bool
SetFeed
(
const
std
::
vector
<
PaddleTensor
>
&
input_datas
,
framework
::
Scope
*
scope
);
///
/// \brief Get the output data, only used in Run()
///
/// \param[out] output_data output tensors
/// \param[in] scope the scope used by predictor
/// \return Whether the function executed successfully
///
bool
GetFetch
(
std
::
vector
<
PaddleTensor
>
*
output_data
,
framework
::
Scope
*
scope
);
///
/// \brief Get the output data, only used in GetFetch()
///
/// \param[in] tensor for fetch op
/// \param[out] output_data output tensor
///
template
<
typename
T
>
void
GetFetchOne
(
const
framework
::
LoDTensor
&
fetchs
,
PaddleTensor
*
output_data
);
// PreSet and PostReset for Mkldnn multi-thread and dynamic shape input.
// Used in AnalysisPredictor::Run(), do not support
// AnalysisPredictor::ZeroRun() now.
///
/// \brief PreSet for Mkldnn multi-thread and dynamic shape input.
///
/// Used in AnalysisPredictor::Run(), do not support
/// AnalysisPredictor::ZeroCopyRun() now.
///
/// \param[in] inputs tensors
///
void
MkldnnPreSet
(
const
std
::
vector
<
PaddleTensor
>
&
inputs
);
///
/// \brief PostReset for Mkldnn multi-thread and dynamic shape input.
///
/// Used in AnalysisPredictor::Run(), do not support
/// AnalysisPredictor::ZeroCopyRun() now.
///
void
MkldnnPostReset
();
///
/// \brief Compute compatibility based on model version information and
/// operator version information
///
/// \return Compatible information
///
bool
CheckOperatorCompatible
();
#if PADDLE_WITH_TENSORRT
// When we use Paddle-TRT INT8 engine, we need to generate calibration table
// data first,
// the calibration table contains the range for each op's input and output,
// this whole process can be divided into several steps:
//
// 1. Builds a 32-bit engine, runs it on the calibration set, and records a
// histogram for each
// tensor of the distribution of activation values.
// 2. Builds a calibration table from the histograms.
//
// After step 2, we need to store the calibration table on disk
///
/// \brief save calibration table
///
/// When we use Paddle-TRT INT8 engine, we need to generate calibration table
/// data first,
/// the calibration table contains the range for each op's input and output,
/// this whole process can be divided into several steps:
/// 1. Builds a 32-bit engine, runs it on the calibration set, and records a
/// histogram for each tensor of the distribution of activation values.
/// 2. Builds a calibration table from the histograms.
/// After step 2, we need to store the calibration table on disk.
///
/// \return Whether the function executed successfully
///
bool
SaveTrtCalibToDisk
();
#endif
...
...
paddle/fluid/inference/api/paddle_mkldnn_quantizer_config.h
浏览文件 @
0129f4b5
...
...
@@ -11,6 +11,17 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
///
/// \file paddle_mkldnn_quantizer_config.h
///
/// \brief Mkldnn quantizer config.
///
/// \author paddle-infer@baidu.com
/// \date 2020-01-01
/// \since 1.7.0
///
#pragma once
#include <cassert>
...
...
@@ -24,75 +35,155 @@
namespace
paddle
{
// Algorithms for finding scale of quantized Tensors.
///
/// \brief Algorithms for finding scale of quantized Tensors.
///
enum
class
ScaleAlgo
{
NONE
,
// Do not compute scale
MAX
,
// Find scale based on the max absolute value
MAX_CH
,
// Find scale based on the max absolute value per output channel
MAX_CH_T
,
// Find scale based on the max absolute value per output channel
// of a transposed tensor
KL
,
// Find scale based on KL Divergence
NONE
,
//
/<
Do not compute scale
MAX
,
//
/<
Find scale based on the max absolute value
MAX_CH
,
//
/<
Find scale based on the max absolute value per output channel
MAX_CH_T
,
//
/<
Find scale based on the max absolute value per output channel
//
/<
of a transposed tensor
KL
,
//
/<
Find scale based on KL Divergence
};
///
/// \class MkldnnQuantizerConfig
///
/// \brief Config for mkldnn quantize.
///
/// The MkldnnQuantizerConfig is used to configure Mkldnn's quantization
/// parameters, including scale algorithm, warmup data, warmup batch size,
/// quantized op list, etc.
///
/// It is not recommended to use this config directly, please refer to
/// AnalysisConfig::mkldnn_quantizer_config()
///
struct
MkldnnQuantizerConfig
{
///
/// \brief Construct a new Mkldnn Quantizer Config object
///
MkldnnQuantizerConfig
();
/** Specify a quantization algorithm for a connection (input/output) of the
* operator type.
* @param op_type_name the operator's name.
* @param conn_name name of the connection (input/output) of the operator.
* @param algo the algorithm for computing scale.
*/
///
/// \brief Set the scale algo
///
/// Specify a quantization algorithm for a connection (input/output) of the
/// operator type.
/// \param[in] op_type_name the operator's name.
/// \param[in] conn_name name of the connection (input/output) of the
/// operator.
/// \param[in] algo the algorithm for computing scale.
///
void
SetScaleAlgo
(
std
::
string
op_type_name
,
std
::
string
conn_name
,
ScaleAlgo
algo
)
{
rules_
[
op_type_name
][
conn_name
]
=
algo
;
}
/** Get the quantization algorithm for a connection (input/output) of the
* operator type.
* @param op_type_name the operator's name.
* @param conn_name name of the connection (input/output) of the operator.
* @return the algorithm for computing scale.
*/
///
/// \brief Get the scale algo
///
/// Get the quantization algorithm for a connection (input/output) of the
/// operator type.
///
/// \param[in] op_type_name the operator's name.
/// \param[in] conn_name name of the connection (input/output) of the
/// operator.
/// \return the scale algo.
///
ScaleAlgo
scale_algo
(
const
std
::
string
&
op_type_name
,
const
std
::
string
&
conn_name
)
const
;
/** Set the batch of data to be used for warm-up iteration.
* @param data batch of data.
*/
///
/// \brief Set the warmup data
///
/// Set the batch of data to be used for warm-up iteration.
///
/// \param[in] data batch of data.
///
void
SetWarmupData
(
std
::
shared_ptr
<
std
::
vector
<
PaddleTensor
>>
data
)
{
warmup_data_
=
data
;
}
/** Get the batch of data used for warm-up iteration.
* @return batch of data.
*/
///
/// \brief Get the warmup data
///
/// Get the batch of data used for warm-up iteration.
///
/// \return the warm up data
///
std
::
shared_ptr
<
std
::
vector
<
PaddleTensor
>>
warmup_data
()
const
{
return
warmup_data_
;
}
///
/// \brief Set the warmup batch size
///
/// Set the batch size for warm-up iteration.
///
/// \param[in] batch_size warm-up batch size
///
void
SetWarmupBatchSize
(
int
batch_size
)
{
warmup_bs_
=
batch_size
;
}
///
/// \brief Get the warmup batch size
///
/// Get the batch size for warm-up iteration.
///
/// \return the warm up batch size
int
warmup_batch_size
()
const
{
return
warmup_bs_
;
}
///
/// \brief Set quantized op list
///
/// In the quantization process, set the op list that supports quantization
///
/// \param[in] op_list List of quantized ops
///
void
SetEnabledOpTypes
(
std
::
unordered_set
<
std
::
string
>
op_list
)
{
enabled_op_types_
=
op_list
;
}
///
/// \brief Get quantized op list
///
/// \return list of quantized ops
///
const
std
::
unordered_set
<
std
::
string
>&
enabled_op_types
()
const
{
return
enabled_op_types_
;
}
///
/// \brief Set the excluded op ids
///
/// \param[in] op_ids_list excluded op ids
///
void
SetExcludedOpIds
(
std
::
unordered_set
<
int
>
op_ids_list
)
{
excluded_op_ids_
=
op_ids_list
;
}
///
/// \brief Get the excluded op ids
///
/// \return exclude op ids
///
const
std
::
unordered_set
<
int
>&
excluded_op_ids
()
const
{
return
excluded_op_ids_
;
}
///
/// \brief Set default scale algorithm
///
/// \param[in] algo Method for calculating scale in quantization process
///
void
SetDefaultScaleAlgo
(
ScaleAlgo
algo
)
{
default_scale_algo_
=
algo
;
}
///
/// \brief Get default scale algorithm
///
/// \return Method for calculating scale in quantization
/// process
///
ScaleAlgo
default_scale_algo
()
const
{
return
default_scale_algo_
;
}
protected:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录