BufferArgTest.cpp 4.2 KB
Newer Older
H
hedaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "BufferArg.h"
#include <gtest/gtest.h>
#include "paddle/math/MemoryHandle.h"

namespace paddle {

TEST(BufferTest, BufferArg) {
  TensorShape shape({8, 10});
  CpuMemoryHandle memory(shape.getElements() *
                         sizeOfValuType(VALUE_TYPE_FLOAT));
  BufferArg buffer(memory.getBuf(), VALUE_TYPE_FLOAT, shape);
  EXPECT_EQ(buffer.data(), memory.getBuf());
}

TEST(BufferTest, SequenceIdArg) {
  TensorShape shape({10});
  CpuMemoryHandle memory(shape.getElements() *
                         sizeOfValuType(VALUE_TYPE_INT32));
  SequenceIdArg buffer(memory.getBuf(), shape);
  EXPECT_EQ(buffer.data(), memory.getBuf());
  EXPECT_EQ(buffer.numSeqs(), 9);
}

TEST(BufferTest, asArgument) {
  MatrixPtr matrix = Matrix::create(100, 200);
  VectorPtr vector = Vector::create(100, false);
  CpuSparseMatrix sparse(200, 300, 50);

  // prepare arguments
  BufferArgs argments;
  argments.addArg(*matrix);
  argments.addArg(*vector);
  argments.addArg(sparse);

  // function
  auto function = [=](const BufferArgs& inputs) {
    EXPECT_EQ(inputs.size(), 3);

    // check inputs[0]
    EXPECT_EQ(inputs[0].shape().ndims(), 2);
    EXPECT_EQ(inputs[0].shape()[0], 100);
    EXPECT_EQ(inputs[0].shape()[1], 200);
    EXPECT_EQ(inputs[0].data(), matrix->getData());

    EXPECT_EQ(inputs[0].matrix<DEVICE_TYPE_CPU>().getHeight(),
              matrix->getHeight());
    EXPECT_EQ(inputs[0].matrix<DEVICE_TYPE_CPU>().getWidth(),
              matrix->getWidth());
    EXPECT_EQ(inputs[0].matrix<DEVICE_TYPE_CPU>().getData(), matrix->getData());

    // check inputs[1]
    EXPECT_EQ(inputs[1].shape().ndims(), 1);
    EXPECT_EQ(inputs[1].shape()[0], 100);
    EXPECT_EQ(inputs[1].data(), vector->getData());
    CpuVector inVector = inputs[1].vector<real, DEVICE_TYPE_CPU>();
    EXPECT_EQ(inVector.getSize(), vector->getSize());
    EXPECT_EQ(inVector.getData(), vector->getData());

    // check inputs[2]
    EXPECT_EQ(inputs[2].shape().ndims(), 2);
    EXPECT_EQ(inputs[2].shape()[0], 200);
    EXPECT_EQ(inputs[2].shape()[1], 300);
    EXPECT_EQ(inputs[2].data(), sparse.getData());
    // CHECK_EQ(inputs[2].sparse().nnz(), 50);
    // CHECK_EQ(inputs[2].sparse().dataFormat(), SPARSE_CSR_FORMAT);
    // CHECK_EQ(inputs[2].sparse().dataType(), SPARSE_FLOAT_VALUE);
    EXPECT_EQ(inputs[2].sparse().getRowBuf(), sparse.getRows());
    EXPECT_EQ(inputs[2].sparse().getColBuf(), sparse.getCols());
  };

  // call function
  function(argments);
}

template <DeviceType DType>
void FunctionApi(typename Tensor<real, DType>::Matrix& output,
                 const typename Tensor<real, DType>::Matrix& input);

template <>
void FunctionApi<DEVICE_TYPE_CPU>(CpuMatrix& output, const CpuMatrix& input) {
  EXPECT_EQ(output.getHeight(), 100);
  EXPECT_EQ(output.getWidth(), 200);
}

template <>
void FunctionApi<DEVICE_TYPE_GPU>(GpuMatrix& output, const GpuMatrix& input) {
  EXPECT_EQ(output.getHeight(), 10);
  EXPECT_EQ(output.getWidth(), 20);
}

template <DeviceType DType>
void Function(const BufferArgs& arguments) {
  auto input = arguments[0].matrix<DType>();
  auto output = arguments[1].matrix<DType>();
  FunctionApi<DType>(output, input);
}

TEST(BufferTest, Function) {
  CpuMatrix cpuInput = CpuMatrix(100, 200);
  CpuMatrix cpuOutput = CpuMatrix(100, 200);
  BufferArgs cpuArgments;
  cpuArgments.addArg(cpuInput);
  cpuArgments.addArg(cpuOutput);
  Function<DEVICE_TYPE_CPU>(cpuArgments);

  GpuMatrix gpuInput = GpuMatrix(10, 20);
  GpuMatrix gpuOutput = GpuMatrix(10, 20);
  BufferArgs gpuArgments;
  gpuArgments.addArg(gpuInput);
  gpuArgments.addArg(gpuOutput);
  Function<DEVICE_TYPE_GPU>(gpuArgments);
}

}  // namespace paddle